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CHAPTERII

INTRODUCTION

MOTIVATION AND OBJECTIVES

Film cooling of gas turbine blades, in which a cool gas is injected at select locations over
the blade surface, is extensively used in military and commercial gas turbines. Even for one row
of holes, the flow field is quite complex with a wide variety of influence parameters such as
blowing angles, lateral spacing, blowing ratio, density ratio, injection hole diameter and shape,
and the state of the approaching mainstream flow and coolant gas flow. The cooling gas is
generally air, trapped from the compressor, and is therefore a source of flow loss. Further,
injection of coolant gas has two opposing effects on the heat transfer. The thermal dilution effect
reduces heat transfer to the blade, but crossflow injection increases turbulence levels in the flow,
and this can lead to an increase in the heat transfer. The gains achieved by film cooling must
overcome the deleterious effects of flow losses and turbulence enhancement, and since these
gains and losses depend on the influence parameters, a careful optimization of the film cooling
process for each gas turbine design is necessary. Due to the large number of influence
parameters, design optimization through experiments can be quite expensive and time-
consuming, and from a practical perspective, a reliable computationally efficient predictive
procedure would be extremely beneficial to the gas turbine industry. The proposed research
represents an effort in this direction.

The present state of the art in numerical predictions is generally not satisfactory, due
primarily to the incorrect closure expressions used for modeling turbulence. Generally, the
Reynolds averaged equations have been solved, and an eddy viscosity concept based on a
gradient approximation for the turbulent stresses has been used. The eddy viscosity has been
calculated either from an algebraic model (see for example, Kulisa et al., 1992; Yavuzkurt et al.,
1980; Herring, 1975) or a two-equation turbulence model (Demuren et al., 1986; Haas et al.,
1992; Chiappette, 1994) originally proposed by Launder and Spalding (1974) and Jones and
Launder (1972). This approach generally leads to an overprediction of the coolant jet penetration
in the normal (to the surface) direction (Kulisa et al, 1992; Chiappetta, 1994) and grossly
inaccurate predictions of the cooling effectiveness near the injection holes (Chiappetta, 1994;
Haas et al.,, 1992). Since the film cooling effectiveness is of primary interest to the industrial
designer, any predictive model that is unable to predict the effectiveness correctly is not wholly
satisfactory.

The deficiencies of a Reynolds-Averaged Navier Stokes (RANS) formulation for
turbulent flow are well known: the space-time computational grid are too coarse to resolve the
dynamic scales in the turbulent flow, and the statistical effects of turbulence fluctuations on the
mean flow are modeled using either algebraic eddy viscosity models, two-equation models or
Reynolds stress models. The accuracy of the predictions are therefore strongly dependent on the
accuracy of the closure approximations, and to date, the RANS formulation has not yielded
accurate predictions in complex flowfields. In Direct Numerical Simulations (DNS), the
computational mesh is chosen so as to resolve all essential scales in the turbulent flow, and no
modeling is required. However, due to the fine mesh needed, the DNS is limited to lower
Reynolds number flows. As the Reynolds number is increased, the scales in the flow diminish,
and the mesh resolution becomes prohibitively expensive. To permit optimization of film cooling
design over a wide parameter range, a computationally efficient procedure is needed by the gas



turbine industry, and therefore DNS is not a viable alternative at this time. A suitable
compromise between the RANS and DNS is the Large Eddy Simulation (LES) approach, in
which, the larger scales of the flow are resolved directly, and the small scale fluctuations are
modeled. The basic premise of the LES approach is that the scales that are dynamically resolved
are the important ones, and that the errors introduced in modeling the small scale fluctuations are
considerably smaller that the errors in the RANS formulation where the entire turbulence stresses
are modeled.

The objective of the proposed research is to perform Direct numerical Simulations (DNS)
and Large Eddy Simulations (LES) for the film cooling process, and to evaluate and improve
advanced forms of the two equation turbulence models. It is important to note that in the near
field of the film cooling jet, the large scale structures are likely to control the mixing process, as
has been shown in free jet studies (see, for example, the review by Ho and Huerre, 1984) and it is
this mixing that dictates the normal and transverse penetration of the jet. Thus the RANS
computations, that are incapable of supporting flow instabilities that lead to the evolution and
growth of large scale structures, are not expected to give realistic predictions in the near field of
the coolant jets. Perhaps, ad-hoc modifications to closure models used in the RANS formulation
can be made, so that predictions, in an average sense, will improve. DNS/LES, on the other hand,
will be able to resolve the large eddies in the near field of the coolant jets, and should therefore
yield more realistic predictions. The use of DNS/LES for selected film cooling configurations is
therefore the first objective of the proposed work. Evaluation of advanced turbulence models in
the RANS formulation is the second objective of the work.

SPECIFIC TASKS COMPLETED

The work done under this project involved code development as well as application of the
codes developed to the film cooling problem. Since DNS/LES codes are not routinely available,
a considerable level of effort was spent in developing and testing codes and algorithms. Several
students were involved in this effort, and this led to the independent development of several
codes. No detailed discussions on the code or algorithms are presented here; instead, a brief
description of the numerical methodology is presented in the successive chapters. In reading
these chapters, the reader will realize that different computing codes were developed and utilized
at different stages of the research, and the code and algorithm development have been
evolutionary processes. The same can be said about the use of turbulence models, and the use of
subgrid stress models in the LES simulations. Professor Acharya and his group continue to work

on these problems at the time of writing this report.
Essentially five different codes were developed and utilized in performing this research.

These can be summarized as follows:

1. A dual-time stepping pseudo-compressibility based approach for solving the
incompressible Navier Stokes equations was developed for DNS studies. Several
versions of this code were tested and include: (a) a collocated multi-block finite-
difference code (b) a staggered multi-block, multi-grid finite difference code (c) a
collocated mutli-block spectral code. Currently efforts are being pursued to include
multi-grid procedure into the collocated multi-block finite difference code. Higher
order finite differences are used and range from sixth-order central differences for the
diffusion term to fifth order upwind biased approximation for the convection terms.
Second and third order-accurate local time stepping schemes have been employed.
For the spectral method, Chebysheb basis functions are used. More description of



some aspects of this method are described in Chapter HI. The code has been
optimized with HPF to run on the Cray T-90 parallel platform. A paper is being
preparcd outlining the details of this pseudo-compressibility DNS method.

A collocated higher order finite difference code using a fractional step approach and a
pressure-Poisson solver has also been developed. This code has been used primarily
for DNS simulations. Higher order finite differences are again employed for the
convection and diffusion terms while the pressure Poisson equation is solved using a
mixed spectral-finite difference procedure. This mixed procedure entails a Fourier
decomposition in the spanwise direction reducing the 3-dimensional pressure-Poisson
equation to a 2-dimensional equation for each wave number in the spanwise direction.
The resulting 2-dimensional equation is then solved by a direct matrix-
diagonalization based procedure. The resulting method is computationally very
efficient. The code has been optimized to execute on a massively parallel platform,
the MasParl and MasPar2. Additional details of this method are presented in Chapter
IVv.

A staggered higher-order finite difference code using a fractional step approach and a
pressure-Poisson solver has been developed for LES simulations. The formulation is
similar to that described in 2. above, except that a staggered grid is employed. The
code is currently a single block code, but is computationally very efficient. LES
calculations are being performed on a Digital-Alfa 500 workstation with typical
single-day run times for a complete LES simulations for the film cooling application.
Additional details of this code and subgrid models used can be found in Chapters V
and VI. Results in Chapters V and VI are presented with the dynamic mixed model
for the subgrid stresses. Additional work (not reported in this report) can be found in
papers written for the 2™ AFOSR DNS/LES conference in Rutgers, NJ, June 1999
(paper presents hole aspect ratio effects on film cooling flow behavior), and the 1999
ASME-IMECE Conference, November, 1999, Nashville (paper presents length scale
effects on dispersion of the film cooling jet).  Further, we are currently producing
results with improved subgrid stress models such as the inverse model for subgrid
stress estimation, and with LES simulations for surface heat transfer and film cooling
effectiveness. Papers on these issues will be written during the summer of 1999, and
will be available by the end of summer.

A staggered finite volume code for RANS simulations. The code uses a SIMPLER
type formulation, and at most, second order accurate schemes. A line relaxation
procedure is used to obtain the solutions. Several turbulence models have been
employed ranging from high Re and low-Re versions of linear two-equation models,
and non-linear two-equation models. Currently solutions are being obtained with the
Reynolds-stress transport models and a recently formulated v2-f model by Durbin at
Stanford's Center for Turbulence Research. Results from these activities are currently
being written up for publication.

In order to extend RANS calculations into more complex geometries, a pseudo-
compressibility based RANS solver, first developed at NASA-Ames (called INS3D),
is being employed. The code is a multi-block curvilincar code and uses an implicit
approximate factorization scheme, 3% or 5" order vector-flux splitting for the
convective terms, and a second order accurate central difference approximation for
the viscous terms. A GMRES relaxation procedure is used to obtain the solutions to



the equations. We have extended this codes capability and integrated several
advanced turbulence models into this RANS solver. Work is currently underway to
extend this code into a curvilinear LES code so that LES calculations on complex

airfoil geometries and hole shapes can be achieved.

PUBLICATIONS RESULTING FROM THE WORK
(Papers listed below have already been written, and copies of these papers are now

available on request. Several other papers are currently being written, and these will be
available at a later time)
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CHAPTER Il

DIRECT NUMERICAL SIMULATION (DNS) OF A ROW OF NORMAL
FILM COOLING JETS IN A CROSSFLOW

ABSTRACT
Results of a three dimensional unsteady computational study of a row of jets injected

normal to a cross-flow are presented with the aim of understanding the dynamics of the large
scale structures in the region near the jet. The jet hole is square in cross-section, and the jet to
cross-flow velocity ratio is 0.5. The calculations are based on higher-order finite differences,
and are performed on extremely refined spatial and temporal meshes so that all the important
energy-carrying scales are resolved. Results obtained indicate that the near field large scale
structures include the shear layer vortices, the counter rotating vortex pair (CVP), the horseshoe
vortex system, and wake and wall vortices. The dynamics of these structures appear to be
significantly influenced by a time-periodic interaction between the jet hole boundary layer and
the approaching crossflow. This periodic behavior involves the approaching crossflow
periodically ingressing into the jet hole region and pushing the injected jet back toward the
trailing edge at a Strouhal number of 0.44 based on the jet velocity and diameter. A new
mechanism for the formation of shear layer vortices is identified and consists of alternate
shedding of positive vorticity from the hole leading edge boundary layer and negative vorticity
from the leading horseshoe vortex. Comparison of the predicted turbulent statistics with
experimental measurements are made and reasonable agreement is observed.

NOMENCLATURE

D Width of the square jet hole exit

Re Reynolds number based on the jet velocity and diameter
dimensional time
dimensionless time (T/D/Vje)
dimensional velocity in the crossflow direction
dimensional velocity normal to the surface
dimensional velocity in the spanwise direction
non-dimensional (=U/Vj) velocity in the crossflow direction
non-dimensional (=V/Vj) velocity normal to the surface
non-dimensional (=W/Vj¢) velocity in the spanwise direction
dimensional coordinate in the crossflow direction
dimensional coordinate normal to the surface
dimensional coordinate in the spanwise direction
non-dimensional coordinate (=X/D) in the crossflow direction
non-dimensional coordinate (=Y/D) normal to the surface
non-dimensional coordinate (=Z/D) in the spanwise direction
pseudo-compressibility parameter
pseudo-time
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INTRODUCTION

Jets in crossflow are encountered in a number of engineering applications including film
cooling of turbine blades and combustor walls, V/STOL aircrafts, flow-control of missiles,
chimney discharges into the environment and effluent or chemical by-product discharges into
flowing water bodies. The flow field for the jet-in-a-crossflow is quite complex as demonstrated
by a number of flow visualization studies (for example, Fric and Roshko, 1994; Kelso et. al.,
1996; Andreopoulos, 1985), and measurements (Andreopoulos and Rodi, 1984; Kamotani and
Gerber, 1972). These studies clearly reveal that in the near field of the jet, the large-scale
structures play a dominant role, and that these structures are quite unsteady in nature. The
majority of the reported computational studies have primarily solved the Reynolds-Averaged-
Navier-Stokes (RANS) equations, and due to the intrinsic time-averaging that is associated with
these equations, the dynamical nature of the vortical structures can not be predicted. Further,
turbulence models have to be introduced, and the accuracy of even the time averaged
calculations are themselves compromised by the validity of the model. Examples of RANS
calculations are those of Patankar et al., (1977), Sykes et al. (1986), Kim and Benson (1992),
Demuren (1993), and Garg and Gaugler, (1994, 1995). More recently, Jones (1996) and Yuan
and Street (1996) presented Large Eddy Simulations (LES) that resolve the dynamics of the large
scales and model the small scales, and observed some of the reported phenomena in the
experiments. However, to comectly reproduce the flow physics, a time-accurate and space-
accurate calculation has to be performed on meshes that temporally and spatially resolve all the
energy carrying structures in the flow. With such a procedure, no models for turbulence have to
be introduced, and the flow physics is expected to be correctly predicted.

The application of interest in the present chapter is the film cooling of gas turbine blades.
In this configuration, a row of coolant jets is injected into a hot crossflow. The goal of the jets is
to provide a wide coverage of the blade surface. This problem differs from the single-jet-in-
crossflow studies, in that, the spanwise boundaries are no longer freestream boundaries. They are
periodic or symmetry (for time averaged calculations) boundary conditions. Further the blowing
ratios of interest in turbine blade cooling are usually low (ranging from 0.5 to 2), and for low
blowing ratios the flow development in the injection hole is affected by the crossflow leading to
a highly non-uniform jet-exit profile. This is in contrast to the more commonly studied single-jet
studies at high blowing ratios where the hole exit profile is more or less symmetrical and is not
strongly influenced by the crossflow. Since the vorticity exiting the hole has a very strong
influence on the downstream development of the dynamical structures, appropriate specification
of the jet-exit conditions is necessary. This requirement dictates that the calculation should
include the flow development in the coolant hole which the majority of the computational
studies have ignored.

The goal of this chapter is to present time-and space accurate calculations for a typical
film cooling configuration, with the specific intent of understanding the dynamics of the various
vortical structures in the near-field. Jet-Reynolds number of interest in film cooling applications
range from 5,000 to 50,000, while blowing ratios of interest range from 0.5-2. The lower
parametric ranges have been selected to keep the computational problem feasible. Increasing the
Reynolds numbers would require greater spatial and temporal mesh resolution, while increasing
the blowing ratio increases jet penetration that would increase the vertical extent of the
computational domain, and would again increase the number of grid points in the calculation
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domain. However, since the flow development in the coolant jet-hole is critical to the near field
evolution of the flow structures, the calculation domain is extended 6.5 D into the jet hole to
include the effects of the crossflow on the flow development in the jet hole.

Square jet-holes injected vertically upwards into the crossflow are considered in this
study. There are two reasons for this choice of geometrical configuration. First, time averaged
measurements for this configuration have been reported by Ajersch et al. (1995), and therefore
the present predictions can be validated with the reported measurements. Second, square holes
on a flat surface permits the use of a Cartesian mesh that considerably simplifies the
computational problem over that required by a curvilinear mesh for a round hole.

NUMERICAL METHOD

The governing equations are the three-dimensional, unsteady incompressible Navier-
Stokes equations. As there are no shocks, the non-conservative form of the equations is chosen.
The non-conservative form requires less floating point operations for a finite difference
representation of the convective terms than the conservative form.

The three-dimensional, incompressible Navier-Stokes equations in their unsteady form
are solved using the method of artificial compressibility.  The method of artificial
compressibility was first proposed byChorin (1968) for steady state solutions to the Navier-Stokes
equations. In this method the incompressible continuity equation is modified by the addition of a
first derivative of pressure, divided by a constant B, with respect to a pseudo-time (t). First
derivatives of u, v and w with respect to a pseudo-time are also added to their respective
momentum equations. This creates a situation similar to that of the compressible Navier-Stokes
equations in which the effect of pressure appears in the continuity equation due to the presence
of a derivative of density with respect to time. When steady state is reached in psuedotime the
added terms become zero and the system of equations is satisfied. This method has been used
by many researchers to solve the steady state Navier-Stokes equations. More recently solutions
to the unsteady Navier-Stokes equations have been obtained by adding the appropriate real time
derivative terms to the momentum equations and obtaining a converged solution in psuedotime
for each real time step. This approach has much in common with recent methods for solving the
compressible Navier-Stokes equations at low Mach numbers.

The governing equations were reduced to non dimensional units by the use of D and the
average velocity of the jet. The physical parameter of interest is the jet Reynolds number. The
pseudo-compressibility parameter B and the pseudo-time step (A1) are chosen so as to maximize
the rate of convergence. In general the larger B is the smaller AT must be in order to maintain
stability. Also the larger P is relative to At the smaller the residual of the continuity equation
will be relative to that of the momentum equations. The value of B used in this chapter was 30.

The numerical method was verified by using the code to compute the common
benchmark problem of vortex shedding behind a square cylinder. The value of the computed
Strouhal number was well within the range of that reported by others.

Spatial and Temporal Differencing
The non-conservative form of the equations are differenced on a staggered Cartesian grid.

A staggered grid is used to prevent the problem of pressure-velocity decoupling. A third order
accurate convective scheme has been developed. This scheme uses a four point upwind biased
stencil derived from a Taylor series expansion for the convective terms. The diffusive terms are
represented by fourth order accurate central differences.
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Points that lic near boundarics are represented by lower (second) order finite differences,
Since a staggered grid is used, i.e. u, v, w and p are defined at different locations it is necessary
to interpolate the velocity components onto each other. This is done by a fitting a Lagrange
surface, defined by four points, over the desired location. The pressure gradient terms and
continuity equation are represented by sixth order accurate finite differences derived from a
Taylor series expansion. Lower order central differences are used near boundaries. A third order
accurate backward finite difference is used to represent the temporal terms involving real time.
Since the time accuracy of the transient behavior in psuedo time is of no concern, first order
forward differencing in pseudo-time is used. The resulting algorithm is explicit in pseudo-time.
This explicit formulation is well suited to processing on vector and parallel computers.

Grid

The grid is a staggered Cartesian grid with unequal spacing in the X and Y directions.
Two zones are used. The first grid contains everything on and above the surface from which the
jet exits. The second grid contains the plenum and 7 points in the Y direction of the first grid.
The coordinates of grid points that lie in both of the grids are the same. Thus no interpolation
between the two zones are needed, and the calculation from one zone to another is handled
seamlessly. The locations where the velocity components are defined are halfway between the

locations where pressure is defined.

Boundary Conditions
The first block above the flat plate uses periodic boundary conditions in the z-direction.

For the outflow boundary, the common convective boundary condition is used. Due to the
staggered grid arrangement, only one velocity component can be specified on each boundary.
The u component can be specified on a YZ plane boundary, the v component on a XZ and the w
component on a XY plane. The other two velocity components require special treatment. This is
done by defining a velocity component outside the boundary in such a way that linear
interpolation between it and the velocity component immediately inside the boundary yields the
correct value on the boundary. No pressure boundary conditions are necessary as a result of the
staggered grid arrangement. At the inlet to the first zone, a 1/7-th power law turbulent velocity
profile with a boundary layer thickness equal to 2D is specified. This profile approximates the
measured conditions of Ajersch et al. (1995) where the crossflow boundary layer approaching
the jet was tripped by a thin rod to ensure a turbulent boundary layer. For the second zone (the
hole development tube), a uniform velocity profile (v=average velocity of the jet, u=w=0) was
used at the entrance to the hole development tube.

PROBLEM DESCRIPTION
As noted ecarlier, the physical configuration (Fig. 1) chosen corresponds to an

experimental study reported by Ajersch et al. (1995). The coolant jets are injected at 90 degrees
(vertically upwards) from a square-cross-section inlet duct with an average velocity of 5.5mv/s.
The width (D) of the square jet exit hole is 12.7mm. The freestream value of the crossflow
velocity is | lm/s. Both the jet and crossflow are at the same (room) temperature. The Reynolds
number based on D and the average jet velocity is 4700.

There are two major differences between the problem in this study and that of Ajersch et
al. (1995). The first difference is related to the fact that no artificial time-varying perturbations
were used at the inlet to either zone to mimic white noise or freestream turbulence. In the actual
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experiments, freestream turbulence is slightly less than 5%. The second difference relates to the
choice of the freestream location. In order to minimize the computational domain, the freestream
boundary condition was imposed at y = 3.5 in this study. This decision was made based on
observations that for the blowing ratio of 0.5 considered in this study, the jet penetration did not
exceed 2.5D in the computational domain. However, because of this arbitrary choice of the
freestream  boundary location, some differences with respect to the measurements may be
expected. The differences are expected to be largest for the vertical component of velocity and
near the freestream boundary. While the differences could be reduced by increasing the vertical
extent of the freestream boundary, this would be associated with the added penalty of increasing
the number of grid points and requiring more computational resources. Therefore the choice of
3.5D was considered to be a suitable compromise, where reasonable agreement with
measurements can be shown in order to validate the calculations, and sufficient resolution can be
obtained at the Reynolds number of interest to resolve all the essential scales in the flow. Since
the focus of the work is in understanding the flow dynamics of the large scale structures, the
latter requirement for resolving the flow scales is extremely important.

The grid used had dimensions of 300x100x100 for the first zone (over the flat plate) and
dimensions of 54x240x34 for the second zone (in the coolant hole region). This translates to
3.53 million grid points. The grid points were clustered towards the solid surfaces and towards
the hole exit boundaries. An estimate of the Kolmogorov length scale (T‘|={v3/e}°'25) was made
(approximately equal to 0.1mm), and the mesh dimensions used (of the order of 0.3 mm over the
jet hole) are estimated to resolve the scales of the flow in the inertial sub-range. A coarser grid
was also used. This grid had dimensions of 186x62x70 for the first zone and dimensions of
27x180x24 for the second zone. This resulted in 0.924 million grid points. Validation of the
computed results is provided through comparisons with measurements shown in the next section.

RESULTS

Time averaged Results
The time averaged results presented are obtained through ensemble averaging the

instantaneous quantities after the initial transients have disappeared and the results reach a quasi-
periodic state. The ensemble-averaging of the instantaneous velocities (u, v, w), and normal
stresses (u'2, v, w'?) are performed over 8250 time steps (which corresponds to 25 flow through
times based on the freestream velocity).

Fig. 2 shows the time-averaged velocity vector plots at various x-locations. These plots
show the two distinct features that the many investigators using turbulence models have reported.
As will be shown, the instantaneous velocity field is very different. At x=1 (roughly half-
diameter away from the downstream edge of the jet-hole) distinct kidney shaped vortices
representing the CVP can be seen on either side of the jet-centerline. Near the periodic
boundaries, a pair of horseshoe vortices both rotating in the same direction and opposite to the
adjacent CVP can be observed. At this x-location, the symmetry on either side of the jet hole
center-plane is very good. At x=3 the kidney shaped vortex has become much larger and lifted
off of the surface. The eye of the CVP is roughly at a y-location of 1. The horseshoe vortex has
become more pronounced and extends from the periodic boundary to 0.8D towards the center of
the jet. Thus, the horseshoe is seen to be partly entrained below the CVP. At x=8, the kidney
shaped vortex has grown significantly and is centered roughly at y=1.5. The horseshoe vortices
have also grown considerably and are situated directly below the CVP. Surprisingly, at this x-
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location and beyond, a significant degree of asymmetry is noted in the horseshoe vortex
structures, with two distinct vortices seen for negative z-values and one horseshoe vortex seen
for positive z-values. It is observed that in the far-field of the jet-hole, where the structures have
grown in size but weakened in strength, there is a low-frequency unsteadiness (or meandering) of
the structures in the spanwise direction. Due to the low frequencies associated with this unsteady
motion, time-averaging over 8,250 time-steps is unable to eliminate the asymmetry. To confirm
the source of asymmetry, calculations were done with roughly | million grid points (this required
less computational resources, and allowed the calculations to be performed for a longer number
of time steps). The time averaged results based on ensemble averaging over 9,000 time steps
showed the same asymmetry as seen in Fig. 2c. However, the time averaged results based on
27,000 time-steps eliminated the asymmetry. Therefore, the asymmetry seen in Fig. 2c is clearly
linked to a low frequency spanwise motion of streamwise oriented vortices. Such an observation
does not appear to have been previously reported.

In Fig. 2, the velocity vectors are overlaid on contours of the turbulence kinetic energy.
The highest turbulence kinetic energy is associated with the deflected jet region. As will be seen
later, the bending of the jet by the crossflow produces large values of the turbulent stresses that
lead to significant turbulence production. The horseshoe vortices and the wake are associated
with lower levels of turbulence kinetic energy.

Attention is next turned toward presenting the time averaged statistics (mean velocities
and turbulence stresses) at different x- and z- values. These time averaged quantities for the fine
and coarse grid are compared with the data of Ajersch et al. (1995). The coarse grid results are
included to give a perspective for the grid independence of the solutions. It is simply not feasible
to adopt the traditional approach, that is, half the grid spacing or use 28 million grid points, as is
expected in Reynolds-Averaged simulations (where considerably fewer points are used). This
less expensive coarse grid can also be used to get an estimate of the time period needed for
gathering statistics. Although the predicted quantities are expected to be similar to those
measured, exact agreement is not expected. This is due to the differences between the
computational and experimental conditions described earlier, and include primarily the absence
of any freestream turbulence in the computations and the imposition of a freestream at 3.5D
above the surface. Furthermore, in the absence of any other information, uniform flow conditions
were specified at the inlet to the coolant hole, and this uniform flow condition is unlikely to be
true in the experiments where the flow entering the coolant hole is expected to be a function of
the plenum and hole design. Also due to the distribution of grid points computational results
were not obtained at exactly the same locations as measured by Ajersch et al. (1995). For all
these reasons, exact agreement between the computations and the experiments should not be
expected.
The difference between the coarse grid statistics averaged over 9000 and 39000 time
steps (Fig. 3-6) can be seen to be reasonably small except for the mean v velocity at x=3 and
x=5. This suggests that the fine grid statistics have been taken over a sufficient number (8250)

of time steps. However as mentioned above this is not sufficient at certain locations far

downstream.
The time averaged components of velocity and the turbulence kinetic energy are shown

for various x-values (x=1, 3, 5 and 8) and at two spanwise locations: z=0 corresponding to the
centerplane of the jet (Fig. 3), and z=-0.5 corresponding to the spanwise edge of the jet hole
(Fig.4). The u component of velocity has the same profile shape as that of Ajersch et al (1995).
The velocities are somewhat overpredicted and particularly so in the wake region compared to



the data of Ajersch et al. (1995). This is, in part, due to the freestream boundary condition
imposed at 3.5D from the surface. At x=I, negative velocities are predicted behind the jet (z=0
and -0.5). However the flow recovery in both the streamwise and spanwise direction is more
rapid in the computations than in the experiments. Thus the predicted recirculation behind the jet
is smaller than that measured. This discrepancy may be linked to the differences in the flow
development in the coolant hole due to different inflow conditions at the entrance to the coolant
flow delivery tube in the computations and the experiments. The predicted velocity profiles
beyond the recirculation region clearly show three distinct flow zones: an accelerating wall jet
region near the wall induced by the entrained crossflow, a wake region with an almost constant
flat profile, and a shear layer region representing the deflected jet where large velocity gradients
are observed. These distinct three-flow-zones appear to be sustained as far downstream as x=8.
In the crossflow region between the hole and the periodic boundary, z=-1 (not shown), a
boundary layer type profile is observed, and the predicted profiles appear to agree well with the
measurements.

The differences between the current predictions and the data of Ajersch et al. (1995) is
expectedly more pronounced for the v-component of velocity. These discrepancies are again
attributed to the differences in the flow development in the coolant tube and to the imposition of
freestream conditions at 3.5D in the computations. The effect of the latter can be clearly seen in
the differences in the predictions and the experiments in the upper half (y>1.5) of the
computational domain in Figs 3-5. Since the v-velocity changes sign across the CVP, the
differences between the predicted and measured values may be exarcebated if the predicted CVP
is slightly displaced in the spanwise direction relative to that in the experiments. The predicted
v-velocities, however, are consistent with expectations, while the measurements at z=0 show
significant scatter. At z=0 (Fig. 3), the v-velocities are mostly positive till x=5 as expected from
the sense of rotation of the CVP. At x=8, negative v is noted close to the wall associated with the
encroachment of the horseshoe vortex directly below the CVP. No such observation can be made
from the measurements, which, on the contrary, show negative v-velocities above the CVP. At
z=-0.5 (Fig. 4), the predicted trends are remarkably similar to those measured even if the actual
magnitudes of the measured values are significantly greater. Both the predicted and measured v
show a dual peak with positive values at x=1. From Fig. 2, it can be seen that at this x-location,
z=-0.5 corresponds to the inner upward-directed leg of the CVP, and the dual peaks are
associated with the lower edge of the CVP (at a y approximately equal to 0.2) and the upward
deflection of the jet (at a y approximately equal to 0.6). At the other x-locations shown, the CVP
has grown in size, and the eye of the CVP has moved closer to the centerline. The z=-0.5 line
cuts almost through the middle of the CVP, and associated with this, both predictions and
measurements show negative velocities close to the wall (outer edge of the CVP moving
downwards) and positive velocities further away from the wall (inner edge of the CVP moving
upwards). At z=-1 (not shown), the predicted and measured v-velocities near the wall are
negative in the near field (x<5) reflecting the downwash of the CVP. The agreement between the
predictions and the experiments is remarkably good in this region. In the far field, as the
horseshoe encroaches below the CVP, positive velocities associated with the horseshoe can be
observed close to the surface. This behavior does not appear to be reproduced by the
experiments, but has been reported by several other investigators at higher blowing ratios
including Andreopoulos and Rodi (1984).

The time averaged w-component of velocity at the center plane (z=0) should be zero if no
asymmetry at the hole exit exists. However, as seen in Fig. 3, the measurements show non-zero



values close to the wall, and a lot of scatter in the data. The predictions also show some non-zero
values near the wall, although they are considerably smaller than the experimental values. These
are related to the low-frequency oscillations in the spanwise directions. Time-averaging over a
significantly longer number of steps is expected to eliminate these small deviations from zero.
At z=-0.5 (Figs. 4) and z=-1 (not shown), the spanwise velocity profiles show the expected
behavior associated with the CVP, positive velocities near the wall representing the inward
motion of the CVP along its lower edge, and negative velocities away from the wall representing
the outward motion of the CVP along its upper edge. The agreement with the measured data
appears to be quite good except at a few points where the experiments show anomalous behavior.
At x=5 and 8, negative w-velocities can be seen very close to the surface, and are again
associated with the encroachment of the horseshoe into the wake region below the CVP.

The turbulence kinetic energy profiles in Figs. 3-4 show the same general trends as those
measured, with the peak kinetic energy at z=0 and -0.5 associated with the deflection of the
crossflow over the jet and the bending of the jet. Thus, in the near-field (x=1), the kinetic energy
peaks less than 0.5-hole-diameter from the surface, while further downstream as the CVP
representing the deflected jet grows larger and lifts off the surface, the peak kinetic energy
location shifts upwards, to roughly 1-hole-diameter off the surface at x=3 and 5, and 1.5-hole-
diameter at x=8. The predictions appear to overestimate the magnitude of the peak and its
location. However these discrepancies are possibly related to differences in the freestream
turbulence levels and jet hole entry conditions in the experiments and computations. Away from
the jet-region, at z=-1 (not shown), the measured turbulence kinetic energy profile is more akin
to that of a boundary layer. However, the predictions show two peaks. Very close to the surface,
the presence of the horseshoe leads to a local peak in the kinetic energy, while further away, the
second peak is associated with the crossflow boundary layer.

Attention is next turned to the profiles of the normal stresses that are shown in Fig. §
(z=0), and Fig. 6 (z=-0.5). Along the jet center-plane (Fig. 5), significant anisotropy is observed
at x=1, where the u-rms predicted is nearly twice the v-rms and w-rms values. As will be seen
later in the vorticity contours (Figs. 8 and 9), the peak u-rms in the near field at z=0 is associated
with shear layer vortices on the leeward side of the jet that show a significant amount of periodic
unsteadiness (Fig. 8). The measurements also show anisotropy with u-rms>w-rms>v-rms, but the
anisotropy is significantly smaller. As the flow progresses downstream, the peak-rms values are
closer to each other in magnitude; however the profile shapes and the location of the peaks are
somewhat different even as far downstream as x=8. For x=3, 5, and 8, the predicted and
measured u-rms profiles show dual peaks. The primary peak is associated with the deflected-jet
shear layer where the velocity gradient du/dy is large. The y-location of the measured and
predicted primary peaks are the same although the predicted values are greater than those
measured. The smaller peak is much closer to the wall in the predictions, and is due to the wall-
jet behavior noted in Fig. 3. The v-rms predictions are again greater than those measured, and
show a fairly flat plateau that correlates well with du/dy in the jet-shear-layer region. The w-
rms predictions appear to agree better with the measurements than the other two components,
and show a peak that is considerably closer to the wall. This peak is presumably associated with
the entrainment of the crossflow and the horseshoe into the wake region, and correlates with
ow/9dz.

At z=-0.5 (Fig. 6), the predicted and measured profiles are in satisfactory agreement with
each other. The trends observed are similar to that at z=0 with two notable differences. The first
is that the secondary peak in u-rms observed in Fig. S becomes as dominant as the primary peak



in the deflected jet region. This is because z=-0.5 represents a location directly through the cye of
CVP at x=3, 5, and 8, and the near wall region expericnces high values of dw/dy leading to the
production of u-rms. Furthermore, at the spanwise edge of the jet there is strong crossflow
entrainment along the wall leading to destabilizing streamline curvature of the crossflow that
enhances turbulence. The second difference relative to Fig. 5 is that in the far ficld, the w-rms
components shows a second peak for y between | and 1.5, and is presumably associated with
du/dz that can be significant along the spanwise edge of the deflected jet.

At z=-1 (not shown), the normal stresses predicted are generally in good agreement with
those measured. The differences noted in the freestream are due to the specification of zero
freestream turbulence in the computations. There are also differences in the near field (x=1),
where the rms values are overpredicted near the walls. These differences however may be linked
to the differences in the computed hole exit profile relative to those measured. The u-rms profile
predicts a peak that is larger and closer to the wall compared to the measured values. This
appears to be linked to the larger predicted values of the spanwise velocity gradient dw/dy
relative to that measured. The v-rms profiles near the surface appear to compare well with those
measured at x=3, 5, and 8. These profiles appear to be characteristic of a developing boundary
layer. The w-rms profiles again show good agreement and appear to reproduce the two peaks
near the wall observed in the measurements. The lower peak is clearly linked to the horseshoe,
while the upper peak is presumably related to the edges of the CVP where du/ dz can be

significant.
It is clear from the above that the normal stresses ui’z do not correlate with du;/ ax; (no

summation implied) as expected from the Boussinesq-gradient approximation. Therefore
turbulence models embodying this approximation (such as the two-equation turbulence models)

are unlikely to do well.

Dynamics

In this section, instantaneous snapshots of the vorticity, pressure and velocity vectors are
presented to understand the spatial and temporal evolution of the larger scales in the flowfield.
As will be seen, the instantaneous structures are considerably more complex, and there are strong
dynamical interactions that eventually control the flow behavior. The strong flow dynamics
indicate that a time averaged calculation procedure is inherently unsuited to predict such a
dynamical flowfield.

Fig. 7 shows all three components of vorticity at one arbitrary instance in time and at four
cross-stream planes corresponding to x=-0.6, -0.0037, 0.527, 1.09, and 1.64. The x-vorticity
contours show the spatial development of the CVP and the horseshoe. Just upstream of the hole
(x=-0.6), the re-orientation of the horseshoe vortex from z-vorticity to x-vorticity can be
observed. The CVP can be seen to be a distinct coherent structure at x=-0.0037 (close to the hole
mid-plane), and is flanked on either side by a horseshoe vortex system that appears to consist of
three vortices, two that are counter-rotating to the CVP and one in-between these two that has the
same sense of rotation as the CVP. Directly above the deflected jet are a set of vortices, with both
positive and negative vorticity, that are presumably associated with the shear layer vortices along
the leading edge of the jet, stretched and reoriented by the secondary flows driving the CVP.
Such secondary vortices riding atop the CVP have been observed by others (see Haven and
Kurosaka, 1998; Sharma and Acharya, 1998 for example). At x=0.527 (just downstream of the
hole exit), the CVP structures are still quite coherent, and have grown in size. However evidence
of interaction with structures in the wake region between the CVP can be seen. At x=1.09, there
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is strong dynamical interaction between the CVP and the wake-structures that have grown
significantly in size and strength. While the CVP is still clearly discernible, it is a fairly
convoluted structure interspersed with structures having vorticity of the opposite sign. At x=1.64,
the CVP structure can not be clearly identified. However, evidence of the horseshoe vortex can
still be clearly seen at this x-location.

In examining the y-vorticity, it can be seen that as the crossflow is deflected around the
jet, the streamline curvature in the z-x plane leads to the generation of the y-component of
vorticity. This can be seen both upstream of the hole and in the mid-hole region. Downstream of
the hole, wake vortices can be clearly identified by the array of elongated (in the vertical
direction) vortical structures. As noted by Kelso et al. (1996) and Fric and Roshko (1994), these
unsteady structures are clearly present in the wake, and have their origins in the crossflow
boundary layer that is entrained into the wake region. The horseshoe vortex structures also
appear to be associated with y-vorticity implying rotation of these structures in the x-z plane.
This rotation may be induced by the strong pressure gradients in the x-z plane and the associated
movement of the crossflow into the wake regions.

The z-vorticity contours before the jet hole (x=-0.6) clearly show the horseshoe vortex
system in front of the jet (negative vorticity), and the boundary layer vorticity (positive)
emerging from the leading edge of the hole. These structures with positive and negative vorticity
are stripped by the jet and ride on top of the jet as seen by the z-vorticity contours near the jet
hole midplane (x=-0.0037). These structures on the windward side of the jet represent the shear
layer vortices. This behavior can be clearly seen in Fig. 8. The negative vorticity emerging from
the trailing edge of the jet hole can be clearly seen in the contours at x=0.527, and the important
role it plays in the shedding of leeward side shear layer vortices is also evident in the contours at
this x-location and at the x-locations fur downstream. At x=1.09, the vorticity along the wall is
positive, and is induced by the instantaneously reversed flow. The positive vorticity is then
entrained by the under-side of the deflected jet characterized, as noted above, by negative
vorticity from the trailing edge of the jet-hole. Thus the leeward side of the deflected jet is
defined by both positive and negative vorticity patches as seen at x=1.09 and 1.64. At both these
x-locations interaction between the vortices on the windward and leeward side can be noted.

The rest of the figures presented in this chapter focus on the dynamical or temporal
behavior of the structures presented so far. The most interesting phenomena noted, and one not
reported earlier, is a dynamical interaction of the horseshoe vortices in the front of the jet hole
with the hole-leading-edge boundary layer structures. This is illustrated in Fig. 8 which shows
the spanwise vorticity contours at the jet center plane, and Fig. 9 which shows the corresponding
pressure contours. Four time instances are shown in these figures. It is observed that the
crossflow shifts the jet toward the downstream edge of the jet hole, and there is significant
ingestion of the crossflow into the exit hole. However, this process shows a distinct time-periodic
variation that does not appear to have been reported before. At a time instance shown in Fig. 8a
and 9a, the stagnation pressure upstream of the jet has built up significantly due to the flow
blockage induced by the injected jet into the crossflow. At this time instance, the structure of the
horseshoe vortices can be clearly seen to consist of two clockwise eddies with a counter-
clockwise eddy straddled in-between. This structure is consistent with the flow visualization
pictures of Kelso et al (1996). The boundary layer vortex along the leading edge of the hole is
expectedly in the counter-clockwise direction. The increase in pressure upstream of the jet shifts
the jet downstream, and pushes the leading horseshoe vortex into the jet hole region. This also
causes the boundary-layer vorticity along the jet hole leading edge to be displaced downstream



and away from the leading edge of the jet hole. At a subsequent time shown in Fig. 8b, the
crossflow has penetrated significantly into the exit hole, with the leading horseshoe vortex
completely inside the exit hole. The exiting jet has been pushed well into the hole, and the
deflected jet exits outwards from only a portion (approximately 50%) of the jet hole exit area in
this plane. The jet hole leading edge vortex is seen to be stretched by the crossflow resulting in
the formation of shear layer vortices along the windward side of the jet. At this instance in time,
the pressure inside the hole has built up due to the crossflow having pushed the jet back leading
to low velocity regions and flow ingestion along the upstream half of the hole exit. The high
pressures inside the exit hole starts pushing the deflected jet vertically upwards and back towards
the leading edge of the hole. This leads to the upward displacement of the ingested horseshoe
which is then entrained and stretched by the crossflow along the windward edge of the exiting jet
(Fig. 8c and 9c). Thus along the windward side both positive counter-clockwise vortices
(originating from the leading edge boundary layer) and negative clockwise vortices (originating
from the horseshoe system) are observed. These positive and negative vortices appear to arrange
themselves in an alternate pattern (Fig. 8a, 8d). It should be pointed out that while several
investigators (Fric and Roshko (1994) , Kelso et al. (1996), Andreopoulos (1985)) have noted the
formation of the shear layer vortices, and have pointed to Kelvin-Helmholtz instabilities or the
hole leading edge vorticity as the source, the entrainment and stretching of the leading horseshoe
vortex along the upper edge of the deflected jet leading to alternate positive and negative vortex
pairs, and the association of these vortices with the periodic pressure variations and jet
deflections, does not appear to have been reported. Along the leeward side, the negative
boundary layer vorticity from the trailing edge of the jet hole, rolls up into distinct spanwise
vortical structures. These are convected downstream, and into the highly unsteady near-wake
region. The recirculation immediately downstream of the jet leads to positive vorticity along the
wall, and in the wake region patches of positive and negative vorticity can be seen. The near wall
negative vorticity can be seen to be entrained into the underside of the deflected jet (Fig. 8) and
interacts with the vortex pairs on the windward side.

The non-dimensional frequency associated with the above-described time-periodic
behavior of the jet and the crossflow is around 0.44. It should be noted that this periodic jet
pulsation leads to a large time-periodic variation in the vertical component of velocity and
therefore the blowing ratio. This variation is shown in Fig. 9(e-h) at four spatial locations. x =
0.245 and y=3.22x10'3 (Fig. 9h) corresponds to a vertical location near the hole exit plane and a
streamwise location nearly midway between the hole center and the trailing edge of the hole. At
this location, a strong inverse correlation between velocity and pressure can be observed. The
vertical component of the jet-velocity can be seen to have an almost sinusoidal variation
(between 1.1 and 1.6) associated directly with the periodic excursion of the crossflow over the
hole with an accompanying reduction of the crossflow area through which the jet exits. This
variation in the jet exit velocity and blowing ratio causes the vertical jet penetration to also have
a significant time-periodic variation. This time periodic variation of the jet penetration can
persist for several diameters downstream of the jet exit as shown later in the streamwise vorticity
contour and cross-stream velocity vectors in y-z planes. Fig. 9¢ is a location roughly half-
diameter downstream of the hole trailing edge and one-diameter above the surface. This location
corresponds to the windward edge of the shear layer, where one can see higher frequency
components due to the shear layer vortices during those times where the periodic jet pulsation
moves the shear layer onto the point being monitored. These higher frequencies are roughly 10
times greater than the 0.44 non-dimensional frequency associated with the periodic insurgence of



the crossflow, and indicates that the crossflow stretching of the horseshoe or hole leading edge
vorticity leads to the formation of several vortex pairs. These pairs intensify and become stronger
as they convect downstream. Near the downstream edge of the hole, they appear to interact with
the vortical structures forming along the leeward edge of the hole, and at certain time instances
self induction of vorticity across adjacent vortex pairs can be noted. Fig. 9f shows a location on
the leeward side of the deflected jet, and evidence of shear layer vortices can be seen
periodically. The frequency of the shear layer vortices on the leeward side is comparable to that
on the windward side. Fig. 9g is a location near the jet-exit plane and in the front half of the jet
hole exit. Flow at this location is in the direct path of the crossflow ingestion, and strong
negative v-velocities can be seen at certain time instances.

The periodic insurgence of the horseshoe vortex over the jet exit hole can be clearly seen
in the x-z plane contour plots of the vertical velocity vector shown in Fig. 10 at four time
instances. The signature of the horseshoe vortex can be seen by the U-shaped necklace pattern
upstream of the hole. All three vortices can be identified. As the horseshoe vortex system moves
over the jet exit hole it begins to break up (Fig. 10b) and part of it rides up on top of the jet. The
periodic ingression of the horseshoe and the crossflow over the jet hole and the associated partial
blockage of the hole can be seen clearly in Fig. 10. The entrainment of the crossflow into the
wake region, and the footprint of the wake vortices can also be clearly seen in this figure.

Fig 11 shows the velocity vectors in the streamwise plane x=0 (middle of the hole) and
pressure contours. In Fig. 11a, the CVP can be clearly seen along the outer edges of the jet. The
centers of the CVP are associated with low pressures. As the pressure in the plenum builds up,
and the ingressing crossflow and horseshoe pinches the hole from all sides, the right CVP is
lifted upwards and inwards (Fig. 11b). A new CVP then begins to form (Fig. 11c), and grows to
its full size (Fig. 11d). This feature is consistent with Fig. 7, and the flow visualizations of
Ajersch et al (1995) and Haven and Kurosaka (1998) who report satellite vortices above the
CVP.

Fig. 12 shows the velocity vectors and the x component of vorticity in the yz plane at
x=1. The CVP is seen to consist of many vortices arranged in a rather chaotic fashion. The
structure of a CVP can be seen in that the left side of the CVP is associated mainly with negative
vorticity while the right side is associated mainly with positive vorticity. In Fig. 12a the
horseshoe vortices can be clearly seen. Comparing Fig. 12c with 12d, one can note that the jet
penetration changes significantly with time. As noted earlier, this is associated with the periodic
interaction of the crossflow with the jet coming out of the hole. This periodic variation in the jet
penetration persists well downstream of the hole.

CONCLUDING REMARKS

A time-accurate calculation of a row of jets injected into a crossflow has been performed on a
fine grid with 3.44 million grid points along with a coarser grid of 0.924 million grid points. The
goal of the work is to identify and understand the dynamics of the important energy carrying
structures in the flow. The following are the major conclusions of this work.

1. The important structures identified include: a horseshoe vortex system that consists of an
anti-clockwise eddy sandwiched between two clockwise eddies, shear-layer vortices on
the windward and leeward sides of the deflected jet, and unsteady wake vortices.

2. A dynamical interaction is observed between the flow in the coolant-tube and the
approaching crossflow which leads to a periodic ingression of the crossflow over the
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coolant hole. The non-dimensional frequency corresponding to this periodic behavior is
around 0.44. This periodic behavior leads to the leading horseshoe vortex and the hole-
leading edge vorticity to be alternately stripped and carried along the top or windward
side of the jet. This mechanism is primarily responsible for the shear layer vortices along
the windward side of the jet.

3. The periodic ingression of the crossflow leads to variations in the hole-exit area through
which the jet is discharged. This variation leads to periodic fluctuations in the jet velocity
leaving the hole, and periodic variations in the jet penetration. These periodic variations
in the jet penetration manifest themselves several diameters (greater than 8) downstream
of the injection hole leading to an up and down flapping of the CVP and the associated
structures.

4. In the instantaneous images, the CVP loses its coherence beyond 1-hole diameter
downstream. Satellite eddies above the CVP can be seen in the near field of the jet.
Time averaged plots show that the CVP retains its structure well downstream of the hole

(greater than 8D).
5. The horseshoe vortices show a low frequency unsteadiness or meandering in the

spanwise directions.
6. The time-averaged stresses clearly show significant anisotropy in the near field and
indicate that the Boussinesq gradient approximation for the stresses is inappropriate.
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CHAPTER IV

DIRECT NUMERICAL SIMULATION (DNS) OF NORMAL FILM
COOLING JETS IN A PERIODIC CROSSFLOW

ABSTRACT
A Direct Numerical Simulation of a coolant jet injected normally into a periodic

crossflow is presented. The physical situation simulated represents a periodic module in a
coolant hole array with a heated crossflow. A collocated finite difference scheme is used which
is fifth-order accurate spatially and second-order accurate temporally. The scheme is based on a
fractional step approach and requires the solution of a pressure-Poisson equation. The
simulations are obtained for a blowing ratio of 0.25 and a channel Reynolds number of 5600.
The simulations reveal the dynamics of several large scale structures including the Counter-
rotating Vortex Pair (CVP), the horse-shoe vortex, the shear layer vortex, the wall vortex and the
wake vortex. The origins and the interactions of these vortical structures are identified and
explored. Also presented are the turbulence statistics and how they relate to the flow structures.

INTRODUCTION
In recent years, Direct Numerical Simulation (DNS) has become a powerful tool in

understanding flow physics and the interaction between various dynamical scales in the flow.
Numerical Simulation of channel flows, due to its geometrical simplicity, has been studied most
commonly in the DNS literature. Orszag et al. (1980) studied transition from laminar to turbulent
flow using a 3-step time splitting method, Fourier series expansions in the spanwise and
streamwise directions and Chebyshev polynomial expansion in the direction normal to the walls.
Orszag et al. (1983) later used the same algorithm, but with an explicit Adams-Bashforth
integration scheme, to perform a DNS of turbulent channel flow. A DNS for a curved channel
flow was carried out by Moser et al. (1984) at Re; = 180 again using a spectral method. Kim et
al. (1987) used a Fourier Chebyshev pseudospectral method to study fully turbulent channel flow
at the same Reynolds number and presented a large number of turbulence statistics. A finite
difference DNS for a turbulent channel flow was presented by Rai et al. (1989) who showed thc
need for higher order accurate upwind schemes to yield accurate simulations.

These initial successes with the DNS method spurred the investigation of slightly more
complex situations. Gavrilakis (1992) and Huser and Biringen (1993) both reported DNS for
flow in a square duct geometry. Lyons et al. (1991) studied fully developed passive heat transfer
in a direct simulation based on spectral method. Kasagi et al.(1992) and Kim and Moin (1989)
obtained the solution to the energy equation for channel flows using a DNS procedure. Sumitani
and Kasagi (1995) have reported a DNS in a channel flow with uniform suction and injection.
More recently, Pointel et al (1996) have presented a DNS of channel flow with heat transfer
using a collocated fifth-order accurate finite difference procedure. The calculations were done
for a Re;= 180 on a 128x64x64 grid and were found to be in good agreement with the DNS data
of Kim et al. (1987) and the measurements of Kreplin and Eckelmann (1979).

The present work aims to extend the work of Pointel et al. (1996) for a2 more complex
flow situation, and intends to perform a DNS of a periodic cross-flow in a channel with a vertical
slot-injection of coolant through the bottom surface. Examples of slot injection into a crossflow
include the film cooling of gas turbine blades and combustor walls, flow control of aircraft and
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missiles through blowing, and ¢ffluent discharges into air or water bodies. The application of
primary interest here is the film cooling of gas turbine blades.

Jets in crossflow, as encountered in film cooling configurations, represent a rather
complex flow situation. Several investigators have studied the features of the flow field
associated with a single jet in a crossflow. The counter rotating vortex pair (CVP) is the most
dominant structure observed, and persists far downstream of the jet injection. The CVP is a
consequence of the reorientation of the jet-hole vorticity by the crossflow (Foss (1980),
Andreopoulos (1985), Kelso et al. (1996)). Shear layer or ring vortices have also been observed
in the near field of the jet. These vortices are driven by the Kelvin-Helmoltz instability.
Horseshoe vortices are produced as a consequence of the jet obstructing the crossflow producing
an adverse pressure gradient just upstream of the jet. These vortices have spanwise vorticity
when they form, and as they travel downstream they are deflected by the crossflow and acquire
streamwise vorticity rotating in a direction opposite to the CVP. Wake vortices which exist
between the wall and the jet have also been observed (Fric and Roshko, 1994).

The majority of the studies aimed at numerically examining the details of the flow
structures have approached the problem by solving the Reynolds Averaged Navier Stokes
(RANS) equations. This time-averaged approach requires the use of turbulence models and
makes predictions of the dynamic nature of vortices unfeasible. RANS calculations have been
reported by Patankar et al. (1977), Sykes et al. (1986), Kim and Benson (1992) and Demuren
(1993). Recently Large Eddy Simulations (LES) that resolve the dynamics of the large scales
only and model the small scales have been presented by Jones (1996) and Yuan and Street
(1996).
The geometrical configuration of interest considered in this work is shown in Figure 1.
The primary flow (called the crossflow) in the channel is in the x-direction. The coolant jet is
injected vertically upwards from a rectangular slot on the bottom surface. Periodic boundary
conditions are imposed on the crossflow in the x-direction. The periodic flow in the x-direction
makes the computational problem not only simpler to handle but it also allows us to mimic the
effects of upstream film coolant holes. In a film cooling configuration with a series of parallel
holes in the streamwise direction, the downstream coolant hole will see the downwash from the
upstream coolant hole, and this effect is incorporated in the present configuration with the
streamwise periodic boundary condition. Single coolant hole studies with Dirichlet inflow and
outflow conditions can not simulate the upstream hole effects. The correct alternative is to
include all rows of holes in the calculation domain, but performing a DNS calculation for such a
configuration is considerably more difficult than the simpler single-hole situation considered in
this work. However, for a single hole domain, the imposition of periodic boundaries in the
crossflow direction is inappropriate, unless a suction boundary condition is incorporated, since
with injection alone there is a net addition of mass across the lower surface. Therefore, in order
to impose periodic conditions in the primary flow direction, a slot-suction boundary condition is
imposed on the top wall. The normal suction velocity and temperature at the top wall is made
exactly equal to the normal injection velocity and temperature at the bottom wall so that the
mass, momentum and energy injected in exactly balances that sucked out. The blowing (or
suction) ratio (injection velocity/crossflow velocity) is taken to be sufficently small (0.25) so that
the injection and suction effects are primarily confined to a small distance normal to the surface.

In the spanwise direction, a row of film coolant holes are assumed to be present.
Therefore, in the computational domain of this study, consisting of a single hole, periodic
spanwise boundary conditions are imposed.

37



NUMERICAL PROCEDURE
Assuming constant density, and using the channel half-width § as the length scale, and

the friction velocity u, for the fully-developed channel flow (with no injection or suction) as the
velocity scale, the non-dimensional continuity equation and the Navier Stokes equation for each
velocity component u; (i=1, 2 and 3 represent the u, v, w velcoity components) can be written as:

V.u=0 »
2U_i+ (J -V.)ui =- ;p +—L- VZUi (2)
ot Re,

In the above equation, p represents the pressure and Re;, represents the Reynolds number based
on the fully-developed channel flow friction velocity. For the temperature, iso-flux, iso-thermal
conditions proposed by Kasagi et al. (1992) have been adopted. According to their
investigations, for iso-flux conditions, the variations in the wall temperature for air flow can be
considered to be negligible. Hence we can assume the wall to be locally isothermal. The isoflux
condition implies that the ensemble averaged wall temperature (over z and t), increases linearly
with x-direction. Hence the bulk mean temperature averaged over z and t also increases linearly
in x-direction and can be obtained from an energy balance. We also assume that the injection and
suction jets are at the same temperature but lower than that of the wall. Hence the overall energy
balance is preserved. The non-dimensional energy equation can then be expressed as:

00 = 2

—t+ AV =1 —_2

> +@.V)8 Re,Pr Ve +— (3a)
f udy

0(x.y.z.n= Lt TC.y:20)

where T (3b)
and Tx is the friction temperature given by qu/(pcyus), and q. and (Tw) are the ensemble averaged

heat flux and wall temperature (over z and t) respectively.
Results are obtained for a Re; =180. This corresponds to a channel Reynolds number Rep,

based on the mean velocity and the channel height of 5600. As noted earlier, DNS results for
fully developed channel flow at this Re; value were reported by Kim et al. (1987) and Pointel et
al. (1996). Since in the configuration considered in this study, the net mass addition is zero,
Re.=180 represents an average value for the channel. The injection and suction jet-holes were
placed in the center of the lower and upper walls and were rectangular in shape with the long
dimension of the hole (d) along the crossflow direction (x) and the short dimension of the hole
(w) in the spanwise direction (z). The corresponding non-dimensional hole sizes d/& and w/§
were 0.5 and 0.2 respectively. The actual non-dimensional lengths of the computational domain
were chosen to be 41 x 2 x 0.4n. These correspond with the 4x X 2 X 21 computational domain
dimensions of Pointel et al. (1996), except in the spanwise direction where coolant hole spacings
of 2.5d (=1.25 ~ 042 in non-dimensional units) has been assumed.
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As noted earlier, the flow and temperature variables are assumed to be periodic in the x
and z directions. Dirichlet, zero velocity and temperature, boundary conditions were imposed at
the channel walls while a zero-value Neumann condition was imposed on the normal pressure
gradient at the wall. At the injection and suction slots, the normal velocity is set equal to 0.25 of
the mean crossflow velocity corresponding to the fully developed channel flow at Re.=180, and
the temperature is set to a value lower than the wall temperature, and is assigned a non-
dimensional value of 0.5.

The Fractional Step approach originally developed by Chorin (1967) was used for
integrating the equations. In the first step, the momentum equation without the pressure gradient
contribution is solved using a second order explicit Adams-Bashforth time-integration for the
convection and streamwise and spanwise diffusion terms. For the normal-diffusion term, an
implicit Crank-Nicholson scheme is used. This approach uses an intermediate velocity (denoted
by a ), and for a typical velocity component, say u, has the following form:

U —u” (4)

u—-u 3 1 1 ~
==(C"+D")-—(C"'+ D" Y+—(D" +D)).
Y 2( ) 2( . ) 2( ; 1)

Here C represent the convection terms, D, represents the streamwise and spanwise diffusion
terms and D; represents the normal diffusive term.
The velocity field is computed in the second step:

n+l -~
u___i - _V¢n+l (5)
where the pseudo pressure ¢ is related to the pressure by:

_Ar o
2Rc 3y’ © (6)

We can apply the divergence operator on equation (5) and use continuity of velocity field to
obtain the pressure Poisson equation:

l ~ n+l
— VI =V(79"). 7

Once the pseudo pressure is known the velocity field u™! can be calculated from equation (5).
The scalar field for temperature is then obtained by integration of the energy equation. We use a
similar approach to the momentum equation to get the fractional step equations from which we
can directly obtain the temperature field.

The spatial discretization was done using the non-conservative formulation of the
convective and diffusive terms on a collocated grid with velocity and pressures at the center of
the control volume. The convective terms were treated by a fifth order upwind biased
approximation as used by Rai et al. (1989). The diffusive terms are treated by a sixth order
accurate seven point central difference stencil. For the boundary terms we used one sided
differences to maintain the accuracy of the scheme. The pressure Poisson equation is discretized
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using the 4-2 consistent formulation as recommended by Najjar et al. (1994). This involves
sccond order discretization of the divergence operator and fourth order discretization of the
pressure gradient operator. In the continuity equation, which is used for updating the velocity
field at the cell faces, the gradient operator is represented by a fourth order finite difference
formulation.

The implementation of the numerical procedure, described below, is done on a MasPar
MP-2. This is a massively parallel computer and provides a suitable platform for computer
intensive DNS calculations. The MasPar is a SIMD machine, which has a 128 x 64 parallel
processors (PE) array. We have used a grid of 128x64x64 for the calculation, which is uniform in
the x and z direction, and non-uniform in the y direction. Each (I, J) node is mapped on to a PE.
Each PE has a local memory of 64K and provides the storage in the third (K) dimension.

The time integration was first done for the velocity field till the flow reached a fully
developed state. Then the thermal field was allowed to reach the fully developed state before the
calculation of mean quantities was started. Typically 60,000 time steps were required to get to
this stage. The calculation of the mean quantities was done over 20,000 non-dimensional time
steps. This was followed by the calculation for the turbulent statistics and this was done over
8000 steps. During the statistics calculation we also calculated the instantaneous vorticity
profiles for various streamwise, crossstream and spanwise planes at various time steps in order to
present the time evolving characteristics for the flow field.

RESULTS AND DISCUSSION
In making an assessment of the adequacy of the grid size used in the present study where

the mean Re, is 180, we make comparisons with the grid resolution of reported channel flow
studies at a Re; of 180. Pointel et al. (1996) used a 128x64x64 grid for simulating fully
developed channel flow in a 47t X 2 X 2 domain at a Re; of 180. Results obtained are shown in
Figure 2 and compared with the DNS predictions of Kim et al. (1987) and the experimental data
of Kreplin and Eckelmann (1979). As can be seen, the comparison is quite good. The same
128x64x64 grid was employed in the present problem which has a smaller computational domain
of 4r x 2 x 0.4x, and therefore has an improved resolution. The resolution in wall-coordinates
are noted to be: Ax* = 17.67, Ay" = 0.018 - 23.76, Az" = 3.59. In comparison, Kasagi et al.
(1992) reported corresponding grid spacings of 18.4, 0.08-4.9 and 7.4 in a 5%t x 2 X 2%
computational domain. Similar grid spacings of 17.7, 0.05-4.4, and 5.9 were also used by Kim
and Moin (1989) and Kim et al. (1987) in a 4n X 2 X 2 computational domain at the same
Reynolds number. Moser and Moin (1984) used 128x65x128 points in a similar computational
domain and comparable Reynolds number, and reported that this resolution was adequate to
resolve all the essential turbulent scales. Lu and Hetsroni (1995), in their direct simulation of
channel flow with heat transfer at a comparable Reynolds number, have used Ax*, Ay*, and Az"
values of 32, 0.4-20, and 8. Based on these comparisons, the grid size used in this study should

be deemed to be adequate.
In presenting the results below, the origin of the coordinate system is fixed at the jet-hole

center. The x and y dimensions are scaled with the long dimension of the jet hole (d) oriented in
the direction of the crossflow, while the z dimension is scaled with the spanwise dimension of

the jet hole (w).
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Characteristics of the Flowfield

Figures 3(a) and (b) present the u and v velocity contours in the spanwise midplane (z/w
=), and correspond to the vector plots shown in figures 5(a) and 5(b). For clarity, scveral of the
plots are stretched in the vertical or spanwise directions. Figure 3(a) and 5(a) clearly show the
almost immediate bending of the jet due to the strong crossflow. The jet penctration is confined
to a y/8 of about 0.5 or a y/d of about | which corresponds to the long-dimension of the jet-hole
(hereinafter referred to as the jet diameter). Figure 5a clearly shows that at the channel mid-plane
(y/d=2), the crossflow velocity is relatively unaffected by the injection or suction slots. This
observation supports the earlier premise that the behavior of the film-coolant injection jet can be
studied independent of the suction jet, and that the observations made should hold for a film
cooling configuration with a series of coolant holes in the crossflow (or primary flow) direction.

A weak horseshoe vortex system is observed in Fig. 3(a) and in the near-wall detail of the
velocity vectors shown in Fig. 5(b). The vortex system extends over one hole diameter upstream
of the jet and appears to consist of two clockwise eddies rotating side by side. However, the
horse-shoe vortex system does not appear to be deflected around the jet as it does at higher
blowing ratios (see Fric and Roshko, 1994; Kelso et al., 1996, Muldoon and Acharya, 1998). No
footprint of the vortex is seen in the x-vorticity contour along a horizontal plane just above the
lower surface (Fig. 3c). :

In examining the instantaneous v-velocity contours (Fig. 3b), it can be seen that roughly 5
hole diameters downstream of the injection location (x/d=5), alternate pockets of positive and
negative v-contours are present (note the high level of stretching in the y-direction). These are
analogous to those observed by Kim et al. (1987), and represents ejection and sweep events
associated with a developing boundary layer. In the near vicinity of the injection hole, 1 < x/d <
5, the behavior is different with primarily positive near wall velocities.

The x-vorticity contours shown in Figure 3c indicate the existence of a dominant wall-
vortex structure close to the lower surface with vorticity opposite to the CVP. Thus downstream
of the injection hole, positive vorticity is seen close to the wall in the right half (viewing the flow
from a downstream point) and negative vorticity is noted in the left half. Further away from the
wall, at a higher y/d value, the CVP is encountered and the sign of the vorticity reverses. This
can be seen in the cross-sectional (y-z) plots of x-vorticity presented later. Figure 3c also shows
the generation of negative and positive x-vorticity on the right and left edges of the jet hole;
these represent the source of vorticity for the CVP. It is however important to note, that the
vorticity for the CVP does not originate from any in-hole boundary layer vorticity (as has often
been reported in the literature), since at the jet exit plane a uniform v-velocity was specified.
Rather, the x-vorticity along the jet-hole edges is generated by the interaction of the injected
velocity and the crossflow.

Figure 4 shows the velocity vectors in different cross-stream planes at x/d=0.5, 2, 5 and
10. At x/d = 0.5 we can see the jet penetration to be more than y/d = 1.8. However beyond a y/d
of 1, the velocity magnitudes in the y-z plane are considerably smaller than the velocities in the
x-y plane, and therefore as seen in Fig. 5a, the flowfield is relatively unaffected by the jet beyond
a y/d of 1. We can see the evolution of the CVP around zZ'w = * 0.8 for y/d < 0.2. There is
considerable flow across the spanwise periodic boundaries indicating a significant level of lateral
transport, and interaction between spanwise adjacent coolant jets. Both inflow and outflow are
noted across the periodic boundaries. We also note the absence of any symmetry across the
z/w=0 boundary. In fact by x/d=10, the CVP has lost its bound-vortex structure and no
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scmblance of symmetry exists across zZw=0. In the near field (x/d<5), each half of the CVP is
clearly associated with a weak counter-rotating eddy system above it.

Figure 5c shows that there is a significant amount of entrainment of the crossflow into the
wake of the jet. This clearly appears to persist up to about x/8 of 9 at which point the wake
appears to meander away from the jet-hole centerline. A close inspection also reveals flow
reversals of the entrained crossflow near the jet-hole centerline. These reversals are most clearly
seen between x/d of 3 and 5 in Fig. 5c, and represent the onset of the wall-vortex system which
will be clearly evident in the x-vorticity contours in a y-z plane presented later.

Figure 6 shows the profiles of the mean velocity and temperature, non-dimensionalized
by the corresponding average friction-velocity u; (which is the same as the friction velocity for
fully developed turbulent channel flow at the same average Reynolds number Re.=180 of this
study) and the average friction-temperaure T.. The profiles are presented for several x/d locations
and two z/w planes, ZZw=0 corresponding to the jet-center plane, and z/w=-1.9 representing a
location between the jet-hole and the spanwise periodic boundary. The near-wall behavior
(y'=y.Rey/8 < 12), appears to conform somewhat to the law-of-the-wall behavior with a
maximum deviation of less than 30%. However, in the turbulent region (y*>12), log-law
behavior is not observed even off the jet-center plane and upstream of the jet (z/w=-1.9, x/d=-2)
due to the effect of vortical flow structures. At z/w=-1.9, the near-wall behavior appears to be
only mildly altered by the spanwise cross-stream flow downstream of the jet In fact, Fig. 5¢
indicates that the spanwise cross-stream flow close to the wall at z/'w=-1.9 is relatively weak.
The maximum deviation from the x/d=-2 profile appears to occur in the vicinity of x/d=2,
beyond which flow recovery is initiated. The profiles in the jet-center plane (Fig. 6b and 6d)
indicate significant distortion of the near-wall behavior by the jet This distortion begins at the
upstream end of the jet (x/d=-0.5) with a significant reduction in the wall-gradients. Flow
recovery begins downstream of the jet, but the recovery in the inner-region (y*<12)is
substantially faster than in the outer-region (y*>12), leading to a change in the sign of the slope
in the velocity profile in the buffer region and immediately above it (7<y*<35 or
0.08<y/d<0.39). Such changes in the slope of the velocity profile can lead to the development of
flow instabilities and large-scale vortical structures. This y/d region can be seen to correlate with
the region associated with the growth of large scale structures in the vorticity contours presented
later.

Figure 7 shows the time history of spanwise vorticity at ZZw = 0. The time-series is
presented at time instances ty, ta,...ts, separated by At=0.02 where At is the non-dimensional time
interval. The figures indicate the predominant negative @, on the windward side which is
indicative of the crossflow bending due to the jet. Patches of positive vorticity can be seen on the
leeward side of the jet. The vortices on the windward and leeward side of the jet are driven by
Kelvin-Helmholtz instabilities, and are generally referred to as shear layer or spanwise-jet-
vortices. These vortices, particularly those from the windward side, appear to be peeled by the
crossflow and convected downstream. In fact the near-wall boundary-layer region downstream of
the jet is dominated by the negative vorticity partly originating from the windward side of the jet,
and partly associated with a developing boundary layer. The dynamical nature of the vortices
should be noted in the time-series presented. Note the vortices on the windward side at time t3
between y/d of 0.5 and 1. At the next time-instance, a necking process is initiated, and
subsequently two vortices form and convect downstream. A third vortex is transported to the
near wall region downstream of the jet. Upstream of the jet the horseshoe vortex system
consisting of two eddies can be observed, but it can be seen to be rather small and localized.
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Figure 8 shows the instantaneous x-vorticity at x/d=-0.5 (upstrecam edge of the injection
hole) and at x/d=0.5 (downstream edge of the injection hole). At x/d=-0.5, the beginings of the
CVP can clearly be seen. This was also observed in Fig. 3c, and implics that the x-vorticity of
the same sign as the CVP is originated on the windward side through the interaction between the
jet and the crossflow. Both at x/d=-0.5 and 0.5, the CVP appears to be straddled by an eddy
rotating in the opposite direction. This is possibly the horse-shoe vortex that lifts up above the
CVP at this low blowing ratio. Reported studies in the literature at higher blowing ratios indicate
that the horse-shoe vortex is deflected in the spanwise direction by the jet and travels
downstream along the wall parallel to the CVP. In the present case, the signature of the horse-
shoe vortex in the spanwise direction is not observed, and we believe that at the low blowing
ratio considered here, since the jet is immediately bent by the crossflow, the horse-shoe vortex
instead of being pushed in the spanwise direction is pushed up in the vertical direction to ride
above the CVP.

Figure 9(a) shows the time-series (presented 2At apart) of the x-vorticity at x/d=2. Three
distinct structures can be observed: the CVP, the horse-shoe vortex system, and a wall vortex
below the CVP. The orientation of the wall vortex and the horse-shoe vortex are in the same
direction and opposite to the CVP. The wall vortex is due to the entrainment of the crossflow
into the wake of the jet. The entrained crossflow encounters high pressures along the jet-hole
centerplane which drives the flow along the wall away from the centerplane, thus establishing a
wall-vortex. The horse-shoe vortex is now shifted outwards toward the periodic boundaries, but
still remains lifted off the surface. In examining the time-series, one notes that the CVP
undergoes significant distortion with time. There is also significant spanwise transport of
vorticity across the periodic boundaries leading to fairly effective spanwise mixing.

At x/d=5 (Fig. 9(b)), a noticeable interaction between the wall-vortex and the CVP is
seen. The wall-vortex can be seen to be entrained upwards towards the CVP, and in this process
is reoriented into y-vorticity representing wake vortices (seen in Fig. 10 and 11). This
reorientation of the wall-vortex system into a wake vortex system has also been reported by Fric
and Roshko (1994) and Kelso et al. (1996).

Further downstream at x/d = 10 (not shown), we cannot clearly identify the CVP as
being an organized structure spanning both sides of the jet-hole vertical midplane. There is
significant vortical activity though, but of a much more complex nature, and indicates the
persistence of the wake.

Figure 10 shows the instantaneous wy contours close to the lower surface at y/d = 0.002,
while Fig. 11 shows the time history of w, contours at y/d = 0.0239 respectively. In Figure 10,
we note that the wake vortices strongly manifest themselves primarily beyond x/d=5 which is the
approximate location where we noted upward entrainment and reorientation of the wall vortex
system (Figure 9(b)). This observation provides further evidence of the correlation between the
wall-vortex and the wake-vortex system. The wake vortices are in the form of a series of co-
rotating or counter-rotating adjacent eddies that have features quite distinct from those behind a
rigid cylinder. At earlier x/d locations, upstream of x/d=5, the wall vortex had remained fairly
stable and bound to the near wall-region, and no significant presence of a series of adjacent co-
and counter- rotating wake vortices was noted. Instead, y-vorticity in the near wake (x/d<5) was
observed in the form of a near-contiguous elongated chain (see Figure 10 and 11) and stems form
the interaction of the jet and the deflected crossflow which leads to significant values of the
Cu/dz term (and therefore wy) along the spanwise edges of the jet. This vorticity is entrained into
the near wake (x/d<5), and eventually breaks down further downstream, contributing also to the
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strong wake vortex system observed beyond x/d of 5. The time series behavior shown in Fig. 11
also indicates that the wake structure oscillates around the jet-hole center-plane in the near field,
but exhibits significant asymmetry in the far field. At time instances t,. t; and ts, for example,
the wake vortex system beyond x/d of 6 is skewed considerably towards positive z/w values.
This departure from symmetry was also noted earlier in velocity vector plots of Fig. 5c.

Figure 12 presents the instantaneous pressure contours at y/d=0.0239 at four time-
instances. The adverse pressure gradient upstream of the jet can clearly be seen, and is
responsible for the horse-shoe vortex system. In the jet-hole region, and downstream of it, the
pressure distribution shows a necklace pattern. Note that in the region -0.5<x/d<0.5 there is a
strong pressure gradient in the crossflow directed inwards in the spanwise direction toward the
jet. This inward pressure gradient combined with the adverse pressure gradient the flow
encounters at the jet interface leads to the generation of x-vorticity of the same-sign as the CVP

along the spanwise boundaries of the jet-hole (zw= £0.5). This mechanism therefore appears to
be responsible for the initial development of the CVP.

Downstream of the jet-hole, the spanwise pressure gradient is directed inwards towards
the jet centerline. This pressure gradient is responsible for the inward entrainment of the
crossflow that is the source of the wall vortex system. Note that downstream of about x/d=5, the
coherence of the pressure contours is somewhat lost leading to the asymmetric wake pattern

reported carlier.

Time-averaged Statistics
Figure 13 and 14 show the rms contours at x/d=0.5, 2, 5§ and 10. At x/d=0.5, Vims and Wms

are comparable in magnitude with the latter attaining slightly larger values, but uq is nearly
twice the Vims and Wps values. The umms and wems plots correlate well with each other exhibiting
maximas in regions of high unsteady w;, vorticity, that is in the outer regions of the CVP and the
CVP-horseshoe vortex interface (see Fig. 8) that exhibit a significant level of unsteadiness, and
near the spanwise periodic boundaries across which significant vorticity transport occurs (Fig. 8
shows only one instance in time, and shows high vorticity near the z/w=-3 boundary. At other
instances in time high vorticity is seen at the z’w=3 boundary as shown in Fig. 9). The v, and
toms profiles correlate well with each other, but do not show a strong correlation with the uqm,s and
Wems plots. In fact the peak values are obtained near y/d=l, and appears to correspond to the
extent of the vertical jet penetration. The interface between the jet and the crossflow, is
characterized by Kelvin-Helmholtz instabilities and high spanwise vorticity w, (see Fig. 7), and
is therefore associated with high vms. Since the jet and the crossflow are at different
temperatures, their interface is also associated with high t.. The aforedescribed correlation
between the rms values and the coherent structures imply that the large scales are largely
responsible for the production of turbulent stresses. At x/d=2, the behavior of the rms profiles is
quite similar to that at x/d=0.5, except that the tn profiles shows high values both in regions of
high vms (interface between the upper edge of the jet and the crossflow) and high u;ms (interface
between the CVP and the crossflow). Further downstream (x/d=5 and 10) the jet deflection is
complete, and the CVP dominates growing in size and strength. All the rms-profiles now
correlate with the high vorticity regions of the CVP, and as a consequence correlate well with
cach other. At x/d=10, we still observe Urms> Vims> Wims, although the relative magnitudes are
closer to each other than they were at x/d=0.5. Note that the time-averaged rms-profiles at
x/d=10 show reasonable symmetry around z/w=0, while the instantaneous profiles shown earlier
(Fig. 5c and 8-11) displayed significant asymmetry in the spanwise direction.
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The rms profiles in the /w=0 planc arc shown in Figure 15. All the peak values occur
downstream of the jet injection (x/d=0), but the upwash effect is clearly evident. High rms values
enter the computational domain from the upstream boundary, and the flow development
downstream of the injection point is constrained by these high rms values. The u;ms value peaks
first in the x-direction (near x/d=5) and occurs closest to the wall (y/d=0.25). while the vms peaks
around x/d=6.5. These peak locations correspond with the location where the shear layer vortices
saturate in strength (see Fig.7). The other rms values w;ms and t.ms peak at an x/d in the vicinity of
7. Note that in the vicinity of this x/d (in the range of 5-7), significant reorientation of the wall
vortex system into a wake vortex system occurs, and therefore the wake- and wall-vortex
structures apparently play an important role in the w,ms and tems values.

Figure 16 and 17 present the Reynolds stress components at x/d=0.5, 2, 5 and 10. As
expected, u’v’ is observed to be symmetric about ZZw = 0, and u'w’ and v’'w’ are observed to be
antisymmetric about zZZw = 0. The high u’v’ values are associated with the jet-crossflow interface
shown in Fig. 7, where shear layer vortices primarily form. At x/d=10, distinct regions of upper
and lower interfaces are no longer clearly evident and a large patch of high u’v’ is noted in the
jet-flow region. High values of u’v’ are also associated with the vortical structures transported
across the periodic boundaries. These structures lead to large values of du/dy and therefore u’v’.
The u’'w’ and v'w’ values are high in regions of large du/Gz and &v/0z respectively. These
regions are again associated with the jet-crossflow interfaces and the vortical structures crossing
the periodic boundaries. Note that the clover-leaf shape and the sign of the v'w’ contours near the
wall for x/d > § indicate the existence of counter-rotating eddies near the wall, i.e., the CVP and
the wall vortex, in the y-z plane. In comparing the magnitudes of the shear stresses, in the near
field (x/d < 2), u'w’ > u’v" > v'w’ with u’w’ being substantially higher presumably due to large
0u/0z values near the edges of the jet. Further downstream, u’w’ and u’v’ become more
comparable in magnitude. '

Figure 18 presents the Reynolds stresses in the z/w = O plane. The peak shear stresses, in
all cases occur downstream of x/d=5. The u’v’ contours correlate best with the v.ms contours
(Fig.15) and therefore correlate with the shear layer vortices, and peak at the locations where
these vortices saturate in strength. At x/d=5, for example, the peak u’v’ value shown in Fig. 17 is
2.85 and its y/d location correlates with the shear layer vortices, while secondary bimodal peaks
(of the order of 1) occur at y/d=0.25 which correlates with the CVP and the horseshoe vortices.
The v'w’ contours appear to be consistent with the nature of the near-wall flow structure in the y-
z plane. Close to the wall, the wall vortex produces negative v'w’ values. The wall vortex system
gains prominence, as seen earlier, around x/d=5 and therefore large negative v'w’ values are
obtained in the vicinity of this x/d value. Further downstream, the wall vortex is entrained as an
upflow into the CVP, and as seen in Fig. 11, wake vortices are noted. The v'w’ contours in this
region show a more complex behavior and are positive. The u’w” contours also correlate well
with the crossflow entrainment. They peak where the crossflow is a maximum (around x/d=5),

and decay further downstream.
Figure 19 and 20 present the turbulent heat flux correlations at x/d=0.5, 2, 5 and 10. The

turbulent heat flux correlations appear to correlate reasonably well with the rms values and the
behavior of the large scale vortical structures, thus indicating the important role these structures
play in the turbulent heat transport. In comparing the magnitudes u’t’ > w’t” > v't" in the near field
(x/d<5) indicating that the streamwise velocity fluctuations are most responsible for the heat
transfer from the surface. Further downstream, at x/d=10, the v't” values become comparable in
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magnitude to the u’t’ values, while the w't’ decrease in magnitude and become less important.
The heat flux distributions at Z/d=0 in the x-y plane are shown in Fig. 21, and support the above
observations. The maximum w’t" occurs near x/d=5 where there is significant spanwise
entrainment of the crossflow. The peak in the u’t” and v't" occur downstream of x/d=5 and at a
y/d location of approximately 0.5. These peak values are therefore associated with the spanwise
shear layer vortical structures (Fig.7).

Figure 22 presents the turbulent viscosity factor v, calculated as:

-u,ul.

au‘. auj
5:7+—8;T (8)
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where all terms on the right hand side of the above equation are computed from the DNS results.
The viscosity factors are presented in a x-z plane corresponding to a y/d=0.1085. While all three
viscosity factors Vii2» Vii3s Vi23were computed, only W2 is presented. Note that the
magnitudes of the individual viscosity factors Ve12» Vi3 V23 at the same point are
substantially different in magnitude indicating the anisotropy in the flowfield. The V2 clearly
comresponds to the wake structure shown in Fig. 11, and indicates that the large-scales clearly
have a role in the values of the turbulent viscosity. The footprint of the horseshoe can also be
seen upstream of the jet hole. The Vu13+ V23 values show less coherence with respect to the
large scale structures, and are characterized more by patches of high positive and negative
viscosity factors. The positive and negative values of the viscosity factors are associated with the
fact that both the turbulent shear stress and the mean strain rate can have both positive and
negative values. Clearly, any use of an isotropic turbulent viscosity is going to be unsuccessful
in capturing the true behavior.

CONCLUDING REMARKS

A Direct Numerical Simulation of a film coolant jet injected normally into a crossflow
has been presented. The crossflow Reynolds number is 5600 and the blowing ratio is 0.25. Both
flow and heat transfer predictions are presented. The following major observations are made:

1. Jet penetration is limited to 1.8 hole diameters, with the primary crossflow velocity relatively
unaffected beyong 1 hole diameter.

2. A weak horse-shoe vortex system consisting of two clockwise eddies is noted within one hole
diameter upstream of the jet. This horseshoe vortex is deflected upwards and rides over the
CVP in the near field of the jet.

3. The near-field past jet reattachment is characterized by developing boundary layer behavior
with ejection and sweep events commonly termed as turbulent bursts. However, these events
are largely controlled by the large scale vortical structures.

4. The origins of the CVP is associated with the x-vorticity generated by the interaction of the
injected jet with the crossflow. Therefore hole-boundary-layer vorticity is not essential for
the generation of the CVP.

5. There is a significant amount of crossflow in the near field (/d<5) of the jet. This crossflow
encounters an adverse gradient along the jet-hole centerline and is responsible for the
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formation of the wall vortex system. The wall vortex is fairly stable for x/d up to S, but
beyond that is entrained into the CVP and is reoriented as a wake vortex system.

6. Along the upper edges of the jet, Kelvin-Helmholtz instability leads to the formation of the
shear layer vortices. These vortices are peeled and convected downstream. '

7. The vems and t.ms contours appear to be most strongly correlated with each other and with the
shear layer vortices in the near field. The urms and wims contours appear to be the larges tat
the interface between the CVP and the horse-shoe vortex and along the periodic boundaries
at the locations associated with significant spanwise crossflow. In general, urms > Wrms > Vems.
The strong correlation of these statistics with the large scale structures point to the
importance of the latter in controlling the surface heat transfer and the near field mixing
between the crossflow and the coolant stream.

8. The viscosity factors show considerably anisotropy and in the horizontal (x-z) plan show
correlation with the large scale structures. Existing statistical models based on isotropy are
clearly going to be inadequate in modeling this complex flow. Current efforts are focussed in
examining the budgets of the turbulence kinetic energy and the dissipation rates, in order to
provide some guidance toward turbulence modeling.
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CHAPTER YV

LARGE EDDY SIMULATION (LES) OF NORMAL FILM COOLING JETS
IN CROSSFLOW: FREESTREAM TURBULENCE EFFECTS

ABSTRACT

The dispersion of film coolant jets in crossflow depends on a complex interaction
between the jets and the mainstream. Large eddy simulations of square jets in crossflow are
performed in this chapter to study the effects of free-stream turbulence levels on the dispersion
of the coolant jets. Free-stream turbulence is characterized here by small scale grid generated
turbulence. The effects of free-stream turbulence intensity levels of 5% and 15% are studied for
jet to crossflow blowing ratio of 0.5 at a jet Reynolds number of 4700.

With high levels of small scale free-stream turbulence, strong intermittent flow structures
generated at the jet-mainstream interface disperse the jet by moving surrounding fluid into the jet
core, and ejecting the jet fluid into the mainstream. Greater jet penetration and jet-mainstream
mixing is observed for higher turbulence levels. The lateral spread of the jet is also increased by
the higher free-stream turbulence intensity.

NOMENCLATURE

Tu Turbulence Intensity (%)

Jet velocity

Dimension of square hole

Blowing ratio of jet to crossflow

Streamwise direction

Normal (to wall) direction

Spanwise direction

X-component of averaged velocity

Y-component of averaged velocity
Z-component of averaged velocity

v, v'w’, u'w’ components of Reynolds stress

tensor.

x

E<aNX DO L

R

INTRODUCTION

The ever-increasing demand for higher specific thrust of a gas turbine engine has resulted
in turbine inlet temperatures exceeding the turbine blade material limits. To increase the life of
the turbine blades, one has to keep the temperature of the blades below their melting point using
some sort of cooling strategy. Film cooling is a technique in which rows of coolant jets are
injected into the hot crossflow gas stream. These jets are deflected and strained by the crossflow
and provide coverage of the blade surface from the hot gases. The interaction of the coolant jets
with the crossflow involves complex and unsteady structures like the horseshoe vortex, the
counter rotating vortex pair (CVP) and wake vortices. These structures control the jet penetration
and its spreading rate. The effectiveness of film cooling is governed by the rate at which the
coolant jets mix with the hotter surrounding flow. Important factors that influence the
effectiveness are free-stream turbulence intensity levels, jet to mainstream momentum ratio and
hole aspect ratio. The objective of this work is to study the effect of free-stream turbulence
intensity on the various flow structures. The free-stream turbulence is characterized, in this
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chapter, as an isotropic homogeneous grid generated turbulence. Hence, a Gaussian distribution
can be used to approximate the fluctuation (Batchelor, 1953). The role of the various components
of the Reynolds stress tensor in controlling the spreading and mixing of the jet with the
mainstream and their dependence on free-stream turbulence intensity levels is studied in this
chapter. Two freestream levels are studied: a low freestream turbulence level of 2% and a
relatively high freestream level of 15%.

In order to reliably predict the jet-in-crossflow situation, the large scales have to be
predicted accurately and the dynamics and interactions of small scales must be modeled
realistically. This requirement calls for large eddy simulations (LES) of the jet-in-crossflow
configuration.

COMPUTATIONAL METHOD

The unsteady three dimensional Navier Stokes equations are solved using the projection
method (Chorin, 1967). This is a fractional step approach in which an intermediate velocity field
is calculated by neglecting the pressure gradients, and the pressure field is obtained as a solution
to a Poisson equation derived using the continuity equation. This pressure field is used to update
the velocity in the projection step. The temporal discretization is done using a second-order
accurate Adams-Bashforth scheme. The calculation of the convective terms is done by a
conservative formulation. A fourth order accurate finite difference scheme is used for these
terms. The viscous dissipation terms are discretized using a fourth order accurate central
difference scheme.

In LES, the governing equations are obtained by applying a filtering operation on the
Navier-Stokes equations and the continuity equation. The filter function is represented as the
convolution operator (Ghosal and Moin, 1995). The unfiltered fields give rise to subgrid scale
stresses that require modeling. Following the dynamic mixed method of Zang et al (1993), these
stresses are decomposed into a resolvable part and an unresolvable part. The resolved part is the
Galilean invariant form of Bardina’s(1983) scale similarity model (Speziale, 1985). The dynamic
Smagorinsky model is used for the unresolved part of the stress and the dynamic coefficient is
test filtered to avoid numerical instabilities.

The issue of filtering is very important for such numerically accurate simulations. On a
non-uniform grid the filtering operator becomes a function of spatial location and hence gives
rise to commutation error leading to low order of accuracy even with very high order accurate
schemes (Ghosal and Moin, 1995). The issue of dependence of dynamic coefficient on aspect
ratio of the grid cells when using grid based filters needs to be addressed on such non-uniform
grids (Scotti et al, 1997). These issues are evaded here by using uniform grids with isotropic
aspect ratio. In particular, the flow contains structures in almost all parts of the computational
domain and hence, all parts of the domain need to be resolved with equal importance. For several
reasons top hat filter is used (Zhou et al, 1989). It is easy to implement in a finite difference
code. It has compact support, unlike Gaussian or exponential filters which violate this
requircment for grid-based filtering. It is a positive or realizable filter ie. if it filters a non-
negative field, the filtered field is always non-negative.

PROBLEM DESCRIPTION

A uniform Cartesian grid of 122 X 52 X 32 points is used for a domain of 12D X 5D x 3D
(Figure 1). At the inflow, a fully developed turbulent boundary layer profile is prescribed and a
small scale turbulence field is superimposed on it. Box-Muller method is used to generate the

72



Gaussian distribution for the perturbation fields. The velocity field is specified at the jet inlet
from the experiments of Ajersch et al (1995). The Reynolds number based on the jet velocity and
the hole dimension is 4700. In the spanwise direction, the periodic boundary condition is applied.
The domain size is taken such that free-stream conditions at the inlet can be used as the top plane
boundary conditions. At the outflow, a convective boundary condition is used where the wave

speed is determined from a flux balance.

) {
| !
| i x 1
- {Tiet
(|

Figure 1 Schematic of the computational domain.

RESULTS

Results are presented for two different turbulence intensity levels at various planes of the
computational domain. The X- component of mean velocity and normal Reynolds stress are
plotted in Figure 2 at streamwise locations X/D =1.0,3.0,5.0 in the jet center plane ie. Z/D=0.
For the mean velocity profiles, a good agreecment is obtained between the experimental data of
Ajersch et al (1995) and the computed results. The predicted magnitude of u’ 2 for the 2% and
15% Tu cases are different in the wake region and the freestream region, but do not show
significant differences in the jet-region. This implies that in the jet-region turbulence levels are
primarily controlled by the gradient-production of turbulence, and diffusion or convection of
freestream turbulence is not significant. However, in the wake region, the higher turbulence
levels for the 15%Tu case implies that associated with the crossflow entrainment into the wake
region there is significant convection and diffusion transport of the freestream turbulence.
Similar results were reported by Bons et al (1996) who reported penetration of high freestream
turbulence into the near wall region. The present simulations imply that the primary mechanism
of the penetration of high freestream turbulence is the crossflow entrainment into the wake
region. Bons et al. (1996) reported that the net effect of the greater near-wall freestream
turbulence levels is a reduction in the film-cooling effectiveness.

The distribution of normal stresses #’ %, v’ %, and w’ ? is shown in Figures 3, 4 and 5
respectively. It is observed that the high freestream turbulence primarily affects the streamwise
(' %) and spanwise (w’ °) turbulence intensity, while the vertical intcnsitg v Y is rapidly
damped by the wall, and no significant influence of Tu can be seen on the v’ “ contours. For the
15%Tu case, the streamwise intensity levels are higher in the near-wake region, as already noted
in Figure 2, while the spanwise intensity levels are much higher downstream of an X/D of 1.5
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Figure 2: Mean velocity U and normal stress
(u)' at the jet center plane (Z/D = 0)

£

e
0.0080 00871 0.1143 0.1714 ¢.2268 0.2037 0.3428 0.400¢

Tu2%

Tu15%

Figure 3: Streamwise normal intensity (u’?)
contours at the jet centerplane (Z/D=0)
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Figure 4: Vertical normal intensity contours
v'%) along the jet centerplane (Z/D=0)

Figure 5: Spanwise normal intensity (w'")
contours at the jet centerplane (Z/D=0)



Presence of high levels of normal stresses in a flow field having large mean velocity
gradients will lead to increased production of the Reynolds shear stresses as shown in Fgs. 7, 9,
and 10 later. Further, the higher energy is re-distributed through non-linear mechanisms among
the various components of stress tensor as well as scales of the flow field.

The time-averaged vorticity contours (wyx) and velocity vectors are shown in Figure 6 at
X/D =3.0. The contours of the turbulent stress v'w’ are presented at the same location in Figure
7. The CVP is an unsteady coherent structure and hence, time-averaged values, obtained after
averaging over six flow-through periods, are shown to depict this organized coherent structure.
The horseshoe vortex is also observed on the two sides of the CVP, and is associated with lower
levels of w, in the opposite sense of CVP. Figure 6 shows that the CVP is stronger and more
organized in the lower turbulence intensity case where the highest vorticity contours occupy a
larger fraction of the CVP core. The velocity vectors also indicate lower magnitudes of the
secondary velocities (V and W) along Z/D=0 in the high turbulence intensity case.

In comparing the v'w’ turbulent stress levels at 2% Tu and 15% Tu, it is observed that
the in the higher Tu case, the stress contours are more uniform and show greater lateral spread.
This implies that the jet experiences greater lateral mixing with the crossflow in the presence of
higher freestream turbulence intensity. The greater lateral mixing with the crossflow leads to a
less coherent CVP as observed in Figure 6. The horseshoe vortex also weakens at higher Tu due
to the greater lateral mixing in this case.

It can also be noted from Figure 7 that increasing the turbulence levels does not change
the structure of the primary coherent structures (the CVP and the horseshoe), but it does affect
the spread of the structures as well as the magnitudes of the stresses. The stresses attain their
maximum value at the edges of CVP. The sign of these stresses are such that they oppose the
CVP motion both along the upper and lower edges of the jet. Along the upper edges, a strong
downward motion is induced by the CVP, and this is opposed by the positive stresses on the
upper-right-half plane and negative stresses on the upper-left-half plane. Along the lower edges,
a strong inward motion is induced by the CVP and is opposed by the negative stresses on the
lower-right-half plane and positive stresses on the lower-left-half plane.

The vertical gradient of spanwise component of velocity is negative in near wall region
below the CVP and is positive in the upper region of the CVP. In the gradient-approximation, the
dominant production term for v’w’ is proportional to the negative of this gradient, and therefore
the observed distribution and signs of v’w’ provides some support to the use of the gradient
approximation for modeling v’w’.

The vorticity contour component normal to the surface w, is shown in Figure 8 at a
location Y/D =0.1 from the wall. Significant entrainment of the crossflow into the wake region is
evident, and the footprints of the coherent wake vortices (Fric and Roshko, 1994) can be clearly
seen in the figure. The larger excursion of the wake vortices in the lateral direction at the higher
turbulence level (Figure 8) is representative of the greater lateral spreading of the jet.

The contours of turbulent stress u’w’ are presented at the same location in Figure 9. The
u’w’ stress levels are higher for the 15%Tu case, particularly downstream of 2 hole diameters
from the jet exit. These higher near-wall stresses at the higher Tu levels are clearly linked to the
higher w'? fluctuations observed in Figure 5, and are associated with the higher freestream
turbulence entrained into the wake from the crossflow. Andreopolous and Rodi (1984) have
identified the importance of u’w’ in determining the lateral spread, and the higher u’w’ stress
levels predicted for the higher Tu case are partly responsible for the greater lateral spreading of
the jet at the higher turbulence intensity.
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Figure 6 Contours of wx and time averaged velocity vectors at X/D = 3.0 for freestream
turbulence intensity levels of 2% and 15%.
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Figure 7 Contours of turbulent stress v'w’ at X/D = 3.0 for freestream turbulence
intensity levels of 2% and 15%.
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Figure 8 Contours of wy and instantaneous velocity vectors at Y/D = 0.1 for turbulence
intensity levels of 2% and 15%.
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Figure 9 Contours of Reynolds stress u’w” at Y/D = 0.1 for turbulence levels of 2% and 15%.

The production of u’'w’ stress appears to be primarily due to
u'VOW /dY)+v'w'(QU /9Z) . Immediately after the jet exit, the presence of strong U /9Z

determines the local spreading of the jet around the hole. Along the edges of the jet on the
leeward side of hole, we observe small regions of opposite signs for #’w’ and these appear to
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correlate with oU/ /9Z . Further downstream, u’w’ appears to correlate best with dW /3Y, and
does not show a strong correlation with dW /dX , which is not consistent with the gradient
approximation. Thus the use of the gradient approximation to model u’w’ may not be very
appropriate.

The vorticity contours in the spanwise direction, ®,, are shown in Figure 10 along the
jet centerplane. Greater vortical activity and enhanced jet penetration is observed for the higher
freestream turbulence intensity case. The presence of stronger freestream structures at higher
turbulence intensity levels enhances the mixing at the jet-mainstream interface and hence
increases the penetration of the jet much further into mainstream at downstream locations from
the hole. A similar observation was made based on the PIV measurement of a jet (Gogineni
et al, 1996). The vorticity generated at the jet interface on the leeward side and in the entrained
crossflow boundary layer rolls up into spanwise structures. These structures are seen to have
greater vorticity and are therefore more energetic for the higher Tu case. The extent to
which these vortical structures penetrate into the mainstream can be used as the measure of
mixing of jet with mainstream (Bons et al, 1996).

The contours of turbulent stress u’v’ along the jet centerplane are presented in Figure
11. The contours of #’v’ are mostly negative in the jet region and hence, the production of u’w’
becomes positive in the regions where the vertical gradient of spanwise velocity is positive.
This happens predominantly at downstream location of hole around the CVP. The greater
production of u’w’ at higher turbulence intensity levels was observed earlier in Figure 9. The
negative levels of #’v’ correspond to the mixing layer at the leeward side of jet. As the free-
stream turbulence intensity is increased, the positive levels of u’v’ are observed below the
negative levels at downstream locations closer to the wall. The positive #’v’ values observed in
the wake of the jet corrspond to the entrained crossflow boundary layer. Expectedly, these
values are considerably higher for the higher Tu case. These higher u’v’ values lead to greater
mixing of the jet with the crossflow and can lead to lower effectiveness of the film cooling jet.

CONCLUSION
Large eddy simulations of the jet-in-crossflow for two different free-stream turbulence

intensity levels were performed. Only small-scale freestream turbulence with a Gaussian pdf is
investigated. The results obtained are consistent with the experimental observations of various
researchers (Andreopolous and Rodi, 1984, Ajersch et al, 1995, Gogineni et al, 1996). The role
of turbulent stresses on jet penctration and lateral mixing is observed to be significant. Higher
free-stream intensity is shown to lead to greater mixing between the jet and the mainstream both
in the vertical and lateral directions.

Bons et al (1996) have reported that the integral length scales may play a significant
role in effectiveness reduction. Hence, grid generated turbulence alone, would be inadequate to
predict the effect of high Tu levels accurately. The effect of length scales and different Tu
levels will be presented in the next chapter.
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Figure 10 Contours of w, and instantaneous velocity vectors at Z/D = 0.0 for turbulence
intensity levels of 2% and 15%

Figure 11 Contours of Reynolds stress «'v’ at Z/D = 0.0 for turbulence intensity levels
of 2% and 15%.
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CHAPTER VI

LARGE EDDY SIMULATIONS OF JETS IN CROSSFLOW:
LARGE SCALE TURBULENCE EFFECTS

ABSTRACT
Large eddy simulations of jets in crossflow are performed to study the effect of energy

containing scales present in the freestream on the penetration and spread of the coolant jet. Two
specific freestream turbulence conditions are examined, one corresponding to 15% small scale
Gaussian turbulence, and the other corresponding to a 15% freestream turbulence that satisfies the
Von-Karman spectrum and has its peak energy specified in the small wave number range (large
scales). The small-scale freestream turbulence can be viewed to be similar to grid generated
turbulence. The large scale freestream turbulence spectrum has energy peak at a small wave
number (corresponding to a specified length scale taken to be 4 hole diameters in this study) and
has energy in the inertial subrange for large wave numbers. In the present study, the jets are
issued through a series of square holes into the main crossflow. The jet to crossflow blowing ratio
is 0.5 and the jet Reynolds number is approximately 4,700.

Greater jet penctration and jet-mainstream mixing, in both the vertical and lateral
directions, are observed for large-scale turbulence. The energy contained in large scales is mostly
preserved although the energy carrying scales themselves undergo subsequent breakdown process
due to the effect of the jet. In the nearfield of the jet, the large scales play a major role in
enhancing the turbulent stresses, and the near wall transport. In the presence of the large scales,
the horseshoe vortex is energized, and there is greater crossflow entrainment into the wake region.
These large scale effects lead to significantly greater wall friction.

NOMENCLATURE

V; Jet velocity

Dimension of square hole

Energy spectrum (3-dimensional)

Wave number

Blowing ratio of jet velocity to crossflow velocity
Reynolds number based on the jet velocity and hole diameter
Streamwise direction

Normal (to wall) direction

Spanwise direction

X-component of averaged velocity

Y-component of averaged velocity

Z-component of averaged velocity

§s<cN<x§w*mU
<
3

Wims time-averaged velocity fluctuations for u, v, w
u'v', v’'w’, u'w’  components of shear stress tensor
A Integral length scale
INTRODUCTION

Film cooling of turbine blades, where rows of coolant jets are injected at an angle into the
hot crossflow, is a commonly used technique to maintain the blade temperatures below a
threshold value. The coolant jets are deflected and strained by the crossflow and provide coverage
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of the blade surface from the hot gases. The interaction of the coolant jets with the crossflow
involves complex and unsteady structures like the horseshoe vortex, the counter rotating vortex
pair (CVP) and wake vortices. These structures control the jet penetration and its spreading rate.

The length scale of freestream turbulence is an important parameter that controls the
development of the flow structures and the penetration and spreading of the jet. Typical
turbulence intensities over a turbine blade can be quite high (15-20%); however, the majority of
studies on film cooling have used low freestream turbulence levels (2-5%). Another important
parameter of interest is the length scale of the freestream turbulence which has typically been
represented in reported studies by grid generated turbulence. However, under realistic operating
conditions, the blade experiences the flowfield emerging from the gas turbine combustor, and this
flowfield is characterized by large coherent eddies and integral length scales that are 3-4 times the
cooling hole diameter. Therefore, to accurately assess the behavior of the film cooling jet, the
influence of freestream turbulence levels and length scales must be appropriately studied.

A number of studies have looked at the effect of freestream turbulence intensity and
length scales on the vane heat transfer with and without film cooling (Kadotani and Goldstein,
1979a, 1979b; Ou et al., 1990; Bons et al., 1996; Kohli and Bogard, 1998a, 1998b; Ames, 1997a,
1997b; Radomsky and Thole, 1998). The general conclusion is that high freestream turbulence
increases the mixing and surface heat transfer, and reduces the film cooling effectiveness.
However, Bons et al. (1996) observed that an increase in film cooling effectiveness could be
obtained with increasing turbulence levels in the region mid-way between the holes. A clear
understanding of the various mechanisms involved is clearly not available due to the limited data,
and additional measurements and computations are necessary. One drawback in the experiments
reported has been the difficulty associated with the ability to simultaneously control the intensity
levels and the length scales. Such control of intensity level and length scales can be more
effectively provided in a time-and space accurate simulation, and forms the basis of the present
study.

The objective of this study is to numerically study the effect of energy containing scales in
the freestream on the various flow structures. Two different characterization of freestream scales
are studied: (1) grid generated turbulence representing small-scale turbulence, and (2) turbulence
that has Von Karman spectrum with a peak at low wave number representing large-scale
turbulence. Small scale grid generated turbulence represents the majority of the film cooling
studies conducted in wind tunnels, while the typical flowfield at the exit of the combustor is
characterized by the Von Karman spectrum with inertial subrange isotropy (Ames, 1997a). In the
present study, both these freestream length scales are simulated, and the effect of the differing
length scales on the cooling jet dispersion is examined. In order to focus attention primarily on the
length scale issue, the turbulence levels are maintained constant at 15% for the two cases.

The numerical study will be done through time and space accurate simulations of the
filtered Navier Stokes equations (Large Eddy Simulations). The majority of the reported
computational studies on the jet-in-crossflow configuration have primarily solved the Reynolds-
Averaged-Navier-Stokes (RANS) equations, and due to the intrinsic time-averaging that is
associated with these equations, the dynamical nature of the vortical structures can not be
predicted. Further, turbulence models have to be introduced, and the accuracy of the time-
averaged calculations is itself compromised by the validity of the model. Examples of RANS
calculations are those of Patankar et al., (1977), Sykes et al. (1986), Kim and Benson (1992), and
Garg and Gaugler, (1994, 1995). Since the dynamics of the large scale features are important, the
large scales have to be predicted correctly and the interactions of small scales must be modeled

82



accurately. This requirement calls for large eddy simulations (LES), where all structures beyond a
certain filter size are resolved, and the unresolved scales are modeled. To minimize numerical
dissipation, an accurate numerical scheme has to be employed. More recently, Muldoon and
Acharya (1999) have presented time-and space-accurate Direct Numerical Simulations (DNS) for
a normally injected jet. Jones and Wille (1996) and Yuan and Street (1996) have presented Large
Eddy Simulations (LES) that resolve the dynamics of the large scales and model the small scales,
for a normally injected jet, and observed some of the reported phenomena in the experiments. As
noted earlier, the main aim of this paper is to perform LES to understand the role of the large
scales in free-stream on the penetration and mixing of the jet with the crossflow.

COMPUTATIONAL METHOD

The unsteady three-dimensional Navier Stokes equations are solved using the projection
method (Chorin, 1967). This is a fractional step approach in which an intermediate velocity field
is calculated by neglecting the pressure gradients, and the pressure field is obtained as a solution
to a Poisson equation derived using the continuity equation. This pressure field is used to update
the velocity in the projection step. The temporal discretization is done using a second-order
accurate Adams-Bashforth scheme. The calculation of the convective terms is done by a
conservative formulation. A fourth order accurate finite difference scheme is used for these terms.
The viscous dissipation terms are discretized using a fourth order accurate central difference
scheme.

In LES, the governing equations are obtained by applying a filtering operation on the
Navier-Stokes equations and the continuity equation. The filter function is represented as the
convolution operator (Ghosal and Moin, 1995). The unfiltered fields give rise to subgrid scale
stresses that require modeling. Following the dynamic mixed method of Zang et al (1993), these
stresses are decomposed into a resolved part and an unresolved part. The resolved part is the
Galilean invariant form of Bardina’s (1983) scale similarity model (Speziale, 1985). The dynamic
Smagorinsky model is used for the unresolved part of the stress and the dynamic coefficient is test
filtered to avoid numerical instabilities.

The issue of filtering is very important for such numerically accurate simulations. On a
non-uniform grid the filtering operator becomes a function of spatial location and hence gives rise
to commutation error leading to low order of accuracy even with very high order accurate
schemes (Ghosal and Moin, 1995). The issue of dependence of dynamic coefficient on aspect
ratio of the grid cells when using grid based filters needs to be addressed on such non-uniform
grids (Scotti et al, 1997). These issues are evaded here by using uniform grids with isotropic
aspect ratio. In particular, the flow contains structures in almost all parts of the computational
domain and hence, all parts of the domain need to be resolved with equal importance. For several
reasons top hat filter is used (Zhou et al, 1989 and Ghosal, 1999). It is easy to implement in a
finite difference code. It has compact support, unlike Gaussian or exponential filters which violate
this requirement for grid-based filtering. It is a positive or realizable filter i.c. if it filters a non-
negative field, the filtered field is always non-negative.

PROBLEM DESCRIPTION

A schematic of the physical problem studied is shown in Fig. 1 where a single row of
square coolant holes is injecting vertically upwards into the crossflow. This specific configuration
has been selected to correspond to the geometry and measurements conditions (with grid
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generated low freestream turbulence) reported by Ajersch et al (1995). Due to spanwise
periodicity in the flow, the computational domain consists of a single coolant hole, and periodic
boundary conditions are applied in the spanwise direction. A uniform Cartesian grid of
122 %52 % 32 points is used for a domain of 12D X 5D X 3D (Figure 1). At the inflow, a fully
developed turbulent boundary layer profile is specified for the mean velocity profile, consistent
with that reported by Ajersch et al. (1995). Both the inflow profile and the freestream conditions
are perturbed, as described later, to generate the desired length scales and intensity levels. The
velocity field at the jet-hole exit is specified from the experiments of Ajersch et al (1995). The
Reynolds number based on the jet velocity and the hole dimension is 4700. The top boundary of
the computational domain is chosen such that freestream conditions at the inlet can be used as the
boundary conditions along the top plane. At the outflow, a convective boundary condition is used
where the wave speed is determined from a flux balance.

@m-ﬂow

Figure 1: Schematic of the computational domain.

To specify grid generated turbulence at the inlet and the freestream, the velocity
fluctuations at these locations are randomly specified from a Gaussian probability distribution
function that is characteristic of grid generated turbulence. The random sampling is done using
the Box-Muller method. This ensures that the random field has Gaussian probability density for
a given variance level. The fluctuation levels are normalized in order to give 15 % turbulence
intensity at the inlet and in the freestream in all three coordinate directions.

For the large scale turbulence case, the energy spectrum is prescribed by the following
relation

Ak*
(B+k? )l%
This spectrum behaves as k* in the limit as k—0 and as k*? in the limit k— . The energy

spectrum has a peak at the wave number k,, that is given by
2n
k, =—
A

E(k) =
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where A is the integral length scale of the energy containing eddies in free-stream. This location
of peak determines the constant B. Spectrum signal is multiplied by random phase. Scrambling
of phase information does not affect the energy distribution amongst scales as it contains the
information about the orientation of eddies only. The negative wave numbers contain the
conjugates of complex entries corresponding to positive wave numbers. Taking the inverse
Fourier transform of this randomized spectrum will give the desired real signal. This signal is
scaled with its rms value and multiplied by the given intensity. The turbulence intensity is
chosen to be 15% to correspond to the small scale turbulence case, while the peak energy is
specified at a A=4D. The choice of 4 hole diameters is based on typical values reported by
Bons et al. (1996) and Kohli and Bogard (1998).

“
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Figure 2: Representative random signals in freestream at X/D = -1.5,Y/D = 4.0 and Z/D = 0.0.

At X/D=-1.5, Figure 2 shows the temporal-signature of the normal velocity component
for both the small-scale freestream turbulence and the large-scale freestream turbulence. The
figure illustrates the differences between the small scale turbulence with high frequency (small
length scales) oscillations compared to the low frequency (large length scales) signature from a
signal satisfying the Von Karman spectrum at the inlet (X/D = -3.5) with peak energy at a wave
number A=4D.

RESULTS

In presenting the results, the focus is on examining the time-averaged results from the
two simulations (small-scale freestream turbulence and large-scale freestream turbulence), and in
highlighting the differences in the observed result. Comparisons with the published data of
Ajersch et al. (1995) have been reported in Tyagi and Acharya (1999, 2000) and show good
agreement. For comparison with experiments, the simulations were done with low freestream
turbulence (2% turbulence intensity) to be consistent with the experimental configuration of
Ajersch et al. (1995). Since the focus of the present paper is on high freestream turbulence, and
specifically on length scale effects, comparison with measurements shown in Tyagi and Acharya
(1999, 2000) are not reproduced here.

Figure 3 presents the spectrum of the X-component of velocity at X/D=-1.5 (upstream of
the jet), and at X/D=1.5 and 4.5 (downstream of the jet). The spectra for both the large-scale and
small-scale freestream turbulence is normalized by the maximum energy corresponding to the
large-scale case. Upstream of the jet (X/D=-1.5), the peak in the u-spectrum at the small wave
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Figure 3: Spectrum of X-component of velocity field at three stations (X/D = -1.5, 1.5 and 4.5)

at jet centerplane and Y/D = 1.0.
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Figure 4: Contours of (2) #ms, (b) Vms and (c) wmmsalong the jet centerplane

number corresponding to A=4D can be clearly observed for the large-scale freestream turbulence
case, while the inertial subrange (with —5/3 slope) is captured at the higher wave numbers. This
peak at A=4D is significantly larger than the peak in the small-scale freestream turbulence case.
The spectrum for the small-scale freestream turbulence case represents isotropic turbulence
corresponding to the inertial subrange. Downstream of the jet (X/D=1.5), in the jet region
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(Y/D=1), the peak at the small wave number disappears, energy is transferred from this peak to
the smaller scales, and the spectra for the two cases look similar, indicating the dominance of the
Jet-crossflow interaction in generating the scales of turbulence. However, the energy levels at all
wave numbers are still somewhat higher for the large-scale freestream turbulence case reflecting
the weaker role of dissipation in the presence of the larger scales.

Figure 4 show the contours of the time-averaged normal stresses (ims, Voms and Wrms)
along the jet center plane (Z/D=0). Consistent with the observations in Figure 3, the u,,, values
are seen to be much higher in the presence of large scale freestream turbulence. As noted earlier,
this is due to the reduced role of dissipation at the larger length scales. In particular, the
magnitude of the streamwise turbulence intensity associated with the horseshoe vortex system
(upstream of the jet where the large scales still show peak energy as seen in Fig. 3) is nearly
doubled for the large-scale turbulence intensity case. The greater energy in the horseshoe vortex
system has ramifications on the downstream development of the horseshoe (as will be seen later
in Fig. 5). For the large scale case, significantly greater streamwise turbulence intensity can also
be seen in the wake of the jet, which in turn, may lead to greater heat transfer at the surface. The
higher i, in the wake may be associated with entrainment into the wake of the crossflow that is
associated with higher energies.

The vms contours shown in Figure 4b, again indicate that the large scales in the freestream
energize the normal fluctuations, particularly in the early regions of the jet-crossflow interaction
(-1<X/D<2). The higher v, in the nearfield of the jet leads to enhanced jet-crossflow mixing,
while the higher v,m; near the wall leads to increased skin friction (Fig.10) and is likely to lead to
increased wall heat transfer. Several investigators have shown a strong correlation between the
surface shear and heat transfer with normal velocity fluctuations, and this expectation is
confirmed in the present study.

The wpms velocity field shows higher values in the freestream and along the upper edges
of the jet for the large scale case, but does not show larger values in the jet region or the in the
wake regions. This is in contrast to the observations for the u,., and Vims-

The time-averaged streamwise vorticity contours and the velocity vectors at three
transverse planes corresponding to X/D = 1.0, 3.0 and 5.0 are shown in Figure 5. Asymmetry
across the mid-plane can be observed, and is related to the asymmetry in the jet exit boundary
conditions specified from the experimental data of Ajersch et al. (1995). The horseshoe vortex
system can be seen to be considerably stronger and larger in the presence of large freestream
turbulence scales. Evidence of this was seen earlier in Figure 4a, where upstream of the jet, the
streamwise and wall-normal velocity fluctuations in the horseshoe vortex were considerably
greater for the large-scale case. At X/D=1.0 and 3.0, the CVP is also seen to be stronger and
exhibits greater penetration for the large scale case; this behavior is again linked to the higher
energies (Ums and vm) in the jet and wake associated with the large scale freestream turbulence.
At X/D = 8.0, the large scales and their effects seemed to have been considerably diminished,
and little difference is observed in the time-averaged vorticity and vector plots. For both cases,
the entrainment of the crossflow into the wake region below the CVP can be seen; this leads to
wall vortices containing vorticity with the opposite sign to the CVP. As discussed by several
investigators (Muldoon and Acharya, 1999; Kelso et al., 1996; Fric and Roshko, 1994) the
crossflow entrainment and the development of wall vortices lead to the development of the wake
vortex structure (see Fig. 7).
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Figure 5: Contours of w, and time averaged velocity vectors at planes X/D = 1.0, 3.0 and 5.0
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Figure 6: Contours of Reynolds stress v’w’ at planes X/D = 1.0, 3.0 and 5.0.

The Reynolds stress contours v’w’ in the transverse planes X/D = 1.0, 3.0 and 5.0 are
shown in Fig. 6, and, for the large-scale freestream turbulence case, considerably higher stress
levels in the near field (X/D = 1.0 and 3.0) are associated with both the CVP and the horseshoe
vortex. The highest stresses are associated with the edges of the CVP and cormespond to the
positions of the maximum velocity gradients. The stress profiles at X/D=5 for the two cases look
similar, and reflect a decrease in the effect of the large scales as already observed.
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Figure 7: (a) Contours of wyand instantaneous velocity vectors at Y/D = 0.1 and (b) Contours of
Reymnolds stress u’w’ at Y/D = 0.1

Figure 7a shows the contours of the vertical vorticity component and velocity vectors
along a horizontal plane (Y/D=0.1) above the jet-exit. Figure 7b shows the corresponding
Reynolds stress contours u’w’ along this plane. The large-scale case clearly shows evidence of
the horseshoe upstream of the jet (with reversed velocity vectors), while the small scale case
does not clearly exhibit this flow separation. For the large scale case significant levels of the
shear stress u’w’ are generated along the edges of the horseshoe and the spanwise edges of the
jet. These large values are again a consequence of high levels of streamwise velocity fluctuations
noted earlier for the case of large-scale freestream turbulence. Clear evidence of wake vortices is
seen in both cases, and as noted earlier, is a consequence of the crossflow entrainment into the
wake, and the upward reorientation of the entrained flow. The primary difference between the
large scale and the small-scale case is that in the large scale case, there is evidence of stronger
crossflow entrainment (larger magnitudes of the entrained crossflow velocities) that manifests
itself earlier in the near wake region. This is best illustrated by particle traces shown in Fig. 8,
where the path of a particle injected on either edge of the jet-exit is displayed. Two views are
presented one looking down, and the other looking from the transverse edge along a streamwise
plane. It can clearly be seen that the particle entrained into the wake is reoriented in the vertical
direction, confirming the earlier observations that the crossflow entrainment into the wake is the
source of the wake vortex system. For the large-scale case, the entrainment into the wake and the
upward reorientation begins immediately downstream of the jet exit (X/D = 0.5), and for the two
trajectories shown is completed by X/D = 3.0. For the small-scale case, the upward reorientation
is delayed to X/D = 2.5 and is completed downstream of X/D=3. The carlier entrainment of the
crossflow for the large scale case is also associated with the location of peak stress being closer
to the jet exit relative to the location of the peak stress for the small scale case.

The spanwise vorticity contours and velocity vectors along the jet centerplane are shown
in Fig. 9a, while the corresponding shear stress u’v’ in the vertical plane is shown in Fig. 9b. For
the large scale case, the spatial perturbations in the freestream velocity is evident in the vorticity
contour and the velocity vectors in Fig. 9a. As already noted, Fig. 9 also shows the substantially
stronger horseshoe system obtained for large-scale freestream turbulence. The recirculation
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Figure 8: Particle traces showing the development of wake vortices (trace release stations at X/D = 0.7,
Y/D =0.2 and Z/D = +0.6)

region is substantially smaller for the large-scale case due to the stronger crossflow entrainment.
In both cases, spanwise vortices on the leeward edge of the jet are observed, and the highest
velocity gradients (9U /dY and 9V /90X ) and shear stresses u’v’ are associated with these
vortical structures. For the large-scale case, the region of negative shear stresses, associated with
the jet region, is much closer to the wall than for the small-scale case, reflecting the much greater
mixing between the jet and the wake for the large-scale case. For this lifted Jjet configuration, the
greater mixing of the lifted jet (cold) with the entrained crossflow (hot) may lead to
improvements in film cooling. This should, of course be balanced by earlier observations, where
for the large scale case, greater crossflow entrainment into the wake region can lead to greater
heat transfer and reduced cooling.

Figure 10 presents the surface skin friction as well as the streamwise and spanwise
vorticity components just above the surface. The skin friction is observed to correlate well with
the streamwise vorticity. Recall that streamwise vorticity is associated primarily with the CVP,
the wall vortex, and the horseshoe vortex. The peak skin friction below the CVP/wall vortex
system is an order of magnitude higher (in the range of 2-3 in non-dimensional units) than at
other locations corresponding to the horseshoe or the wake (in the range of 0.15-0.7). The skin
friction for the large scale case is substantially higher in the near field (X/D<3) Jet, and is
consistent with the higher #,,s and v,,, observed near the wall for the large scale case. The higher
wall friction is also likely to be associated with higher wall heat transfer. Note that in the region
just downstream of the jet exit (0.5<X/D<?2), the flow separation in the small scale case leads to
very small values of wall shear, while in the large scale case the absence of any significant
recirculation in this region, as seen in Fig. 9, leads to high values of the wall shear.
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CONCLUDING REMARKS

Large eddy simulations of a vertically injected jet-in-crossflow were performed for two
freestream turbulence length scales at 15% freestream turbulence intensity. The following
represent some of the major observations made in this study.

The larger length scales have a substantial impact on the turbulent stresses in the near field of
the jet. Significantly larger values of Urms, Vems, and the shear stress components are observed
with the large-scale freestream turbulence in the region —1<X/D<3.

The wall friction correlates well with the streamwise vorticity, and is substantially higher for
the case of large-scale freestream turbulence.

The jet-crossflow interaction plays a major role in dictating the flow scales in the jet region
and the effect of the larger freestream scales is considerably reduced in this jet region.

The effect of the large scales is significant in energizing the horseshoe vortex system, and in
enhancing the crossflow entrainment into the wake region. As a consequence, the horseshoe is
considerably larger and stronger for the large-scale case. The entrainment of the crossflow
boundary layer into the wake is initiated earlier, and is stronger, for the large-scale case.
Therefore, the recirculation region behind the jet is considerably diminished in the large-scale
case. These large-scale effects are primarily responsible for enbancing the turbulence.
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CHAPTER VI

LARGE EDDY SIMULATION (LES) OF INCLINED FILM COOLING JETS
IN CROSSFLOW

ABSTRACT

Large eddy simulations of a normal and an inclined jet in crossflow are performed to
study the effect of jet inclination on the penetration and spread of the coolant Jet. In the present
study, the jets are issued through a square duct into the mainflow at two different inclination
angles of 30° and 90°. The jet to crossflow blowing ratio is 0.5 and the jet Reynolds number is
approximately 5,000.

Greater jet penetration and jet-mainstream mixing, in both the vertical and lateral
directions, are observed for the normally injected jet. A significantly larger recirculation is
obtained in the wake of the normal jet and is likely to lead to low film-cooling effectiveness in
the near wake region. For normal jet injection, large pressure gradients are present, and clear
evidence of spanwise rollers on the leeward side of the jet are observed. These features are not
observed for the inclined jet. The wall skin friction in the near field of the Jet is lower for the
normally injected jet, and appears to correlate best with the streamwise vorticity.

NOMENCLATURE

Jet velocity

Dimension of square hole

Blowing ratio of jet to crossflow

Streamwise direction

Normal (to wall) direction

Spanwise direction

X-component of averaged velocity

Y-component of averaged velocity
Z-component of averaged velocity

v, v’w’, u’'w’ components of Reynolds stress tensor.

E<EN~<XmU<

&

INTRODUCTION

Film cooling of turbine blades, where rows of coolant jets are injected at an angle into the
hot crossflow, is a commonly used technique to maintain the blade temperatures below a
threshold value. The coolant jets are deflected and strained by the crossflow and provide
coverage of the blade surface from the hot gases. The interaction of the coolant Jjets with the
crossflow involves complex and unsteady structures like the horseshoe vortex, the counter
rotating vortex pair (CVP) and wake vortices. These structures control the Jet penetration and its
spreading rate.

The inclination angle of the jet is an important parameter that controls the development of
the flow structures and the penetration and spreading of the Jet. The effectiveness of film cooling
is governed by the vertical and lateral spreading of the Jet, and typically an inclination angle of
around 30° has been found to be most desirable from the perspective of increasing film cooling
effectiveness. The objective of this work is to numerically study the effect of the jet inclination
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angle on the various flow structures. Two jet-inclination angles are studied: 90° representing
normal injection, and 30° representing simple-angle injection. The numerical study will be done
through time and space accurate simulations of the filtered Navier Stokes equations (Large Eddy
Simulations). Although the focus of the work is on the flow field, a qualitative idea of the heat
transfer can be obtained by examining the dispersion of the jet in the crossflow and by the shear
stress distribution at the walL

The majority of the reported computational studics on the jet-in-crossflow configuration
have primarily solved the Reynolds-Averaged-Navier-Stokes (RANS) equations, and due to the
intrinsic time-averaging that is associated with these equations, the dynamical nature of the
vortical structures can not be predicted. Further, turbulence models have to be introduced, and
the accuracy of the time-averaged calculations are themselves compromised by the validity of
the model Examples of RANS calculations are those of Patankar et al, (1977), Sykes et al.
(1986), Kim and Benson (1992), and Garg and Gaugler, (1994, 1995).

Since the dynamics of the large scale features are important, the large scales have to be
predicted correctly and the interactions of small scales must be modeled accurately. This
requirement calls for large eddy simulations (LES), where all structures beyond a certain filter
size are resolved, and the unresolved scales are modeled. To minimize numerical dissipation, an
accurate numerical scheme has to be employed. More recently, Muldoon and Acharya (1999)
have presented time-and space-accurate Direct Numerical Simulations (DNS) for a normally
injected jet. Jones and Wille (1996) and Yuan and Street (1996) have presented Large Eddy
Simulations (LES) that resolve the dynamics of the large scales and model the small scales, for a
normally injected jet, and observed some of the reported phenomena in the experiments.
However, no DNS/LES studies have been reported for the inclined jet in a crossflow
configuration. As noted earlier, the main aim of this work is to perform LES for normal and
inclined jets in crossflow, and to understand the role of the large scales in the penetration and
mixing of the jet with the crossflow.

COMPUTATIONAL METHOD

The unsteady three-dimensional Navier Stokes equations are solved using the projection
method (Chorin, 1967). This is a fractional step approach in which an intermediate velocity field
is calculated by neglecting the pressure gradients, and the pressure field is obtained as a solution
to a Poisson equation derived using the continuity equation. This pressure field is used to update
the velocity in the projection step. The temporal discretization is done using a second-order
accuratc Adams-Bashforth scheme. The calculation of the convective terms is done by a
conservative formulation. A fourth order accurate finite difference scheme is used for these
terms. The viscous dissipation terms are discretized using a fourth order accurate central
difference scheme.

In LES, the governing equations are obtained by applying a filtering operation on the
Navier-Stokes equations and the continuity equation. The filter function is represented as the
convolution operator (Ghosal and Moin, 1995). The unfiltered fields give rise to subgrid scale
stresses that require modeling. Following the dynamic mixed method of Zang et al (1993), these
stresses are decomposed into a resolved part and an unresolved part. The resolved part is the
Galilean invariant form of Bardina’s (1983) scale similarity model (Speziale, 1985). The
dynamic Smagorinsky model is used for the unresolved part of the stress and the dynamic
coefficient is test filtered to avoid numerical instabilities.
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The issue of filtering is very important for such numerically accurate simulations. On a
non-uniform grid the filtering operator becomes a function of spatial location and hence gives
rise to commutation error leading to low order of accuracy even with very high order accurate
schemes (Ghosal and Moin, 1995). The issue of dependence of dynamic coefficient on aspect
ratio of the grid cells when using grid based filters needs to be addressed on such non-uniform
grids (Scotti et al, 1997). These issues are evaded here by using uniform grids with isotropic
aspect ratio. In particular, the flow contains structures in almost all parts of the computational
domain and hence, all parts of the domain need to be resolved with equal importance. For several
reasons top hat filter is used (Zhou et al, 1989 and Ghosal, 1999). It is easy to implement in a
finite difference code. It has compact support, unlike Gaussian or exponential filters which
violate this requirement for grid-based filtering. It is a positive or realizable filter i.e. if it filters a
non-negative field, the filtered field is always non-negative.

PROBLEM DESCRIPTION

A schematic of the physical problem studied is shown in Fig. 1a (for normal injection)
and in Fig. 1b (for inclined injection). A uniform Cartesian grid of 122 X 52 X 32 points is used
for a domain of 12D X 5D X 3D (Figure 1). At the inflow, a fully developed turbulent boundary
layer profile is prescribed. In the normal jet case, the velocity field is specified at the jet inlet
from the experiments of Ajersch et al (1995). The Reynolds number based on the jet velocity and
the hole dimension is 4700 for this case. For the inclined jet case, the velocity at jet inlet is
prescribed from the experiments of Findlay et al (1996). The Reynolds number based on the jet
velocity and the hole spanwise dimension is 5000 for this case. For both configurations, a
periodic boundary condition is applied in the spanwise direction. The domain size is chosen such
that free-stream conditions at the inlet can be used as the boundary conditions along the top
plane. At the outflow, a convective boundary condition is used where the wave speed is
determined from a flux balance.

Figure la: Schematic of the computational Figure 1b: Schematic of the computational
domain for normal jets. domain for inclined jets.
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RESULTS

Results are presented for two different jet inclination angles at various planes of the
computational domain. The X- component of mean velocity and rms fluctuations V(u’u ") and
V(v’v’) are plotted at locations X/D =3.0 and 5.0 in the Jet center plane, Z/D=0 (Figure 2a and
2b). A good agreement is obtained between the present predictions and the experimental data of
Ajersch et al (1995) for normal injection (Fig. 2b) and the data of Findlay et al (1996) for 30°
simple injection (Fig. 2a). In the normal jets case (Fig. 2b), the mean profile at both X/D of 3 and
5 exhibits three distinct regions: the shear-layer or jet region at the top, the wake region in the
middle, and a near-wall boundary layer region induced by the entrained crossflow. The u,,

appears to scale well with the —a-g, with a maximum in the jet region and a minimum in the

wake region. The v, is highest in the jet region and is damped rapidly as the wall is approached.
At X/D=3.0 and 5.0, the peak u,,;s and v, occur roughly around Y/D=1.2, while the vertical jet
penetration distance is in the vicinity of Y/D=1.5. For the inclined jets (Fig. 2a), the jet
penetration is considerably less (smaller than Y/D of 1), and wake effects are weaker, At
X/D=3.0, the three regions noted in the normal injection case, although visible, are not as
distinct. At X/D=5.0, the three regions are not visible, and wake recovery has progressed to a
much greater degree than in the normal injection case. As for the normal injection case, the jet
region appears to be associated with large rms values, but the magnitude of the rms values is
nearly half of the values for the normal injection case. A notable exception is observed for the
Urms Which shows a large peak (with values as high as 0.4) close to the wall. This large near-wall
value of u.,, may be associated with the fact that the injected jet stays close to the wall, and its
interaction with the entrained crossflow leads to significant production of turbulence near the
wall.

The time-averaged vorticity contours (w,) and velocity vectors are shown in Figure 3 at a
location X/D =5.0 from the center of the jet. The contours of the turbulent stress v'w’ are
presented at the same location in Figure 4. The CVP is an unsteady coherent structure and hence,
time-averaged values, obtained after averaging over six flow-through periods, are shown to
depict this organized coherent structure. The horseshoe vortex is also observed on the two sides
of the CVP, and is associated with lower levels of w, in the opposite sense of the CVP. In
comparing the flow structures for the normal and angled-injection cases, Fig. 3 shows results
consistent with the velocity profiles in Fig. 2, that is, for the normal injection case, the jet
penetration in the vertical direction, and the associated CVP structure, is much larger. The lateral
penetration of the CVP is also more for the normal-injection case. However, the horseshoe
vortex along the periodic boundaries appears to be considerably smaller for normal injection, and
may be associated with the fact that the larger lateral growth of the CVP with normal injection
compresscs the horseshoe toward the periodic boundaries and restricts its growth in the lateral
direction. The crossflow entrainment into the wake leads to the formation of the wall vortex
structures (Figure 3) as also noted by Fric and Roshko (1994). These structures are seen for both
Jet inclinations. However, for the inclined jet case, due to the proximity of the jet to the wall, the
interaction of the entrained crossflow with the jet is stronger leading to more complex near wall
structures.

The v'w’ turbulent stress contours appear to correlate well with the CVP and the horseshoe
vortex structures, implying that these large scale coherent structures in the flow are principally
responsible for the Reynolds stresses. The locations of the peak stresses are shifted slightly
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upwards relative to the eye of the large structures, and correspond with the locations where the
velocity gradient and the production of the turbulent stress is the greatest. In comparing the
turbulent stress levels for 30° and 90° injection, it is observed that the magnitude of the peak
stress levels is larger in 90° case almost by a factor of 7. Note that these shear stresses can be
viewed as turbulent forces that influence the flow motion, and that in the right-half plane (Z>0),
a positive stress value impedes the flow motion while a negative value aids the flow. The CVP
motion is observed to be primarily damped by the opposing action of the turbulent stress v’w’.
For the inclined jet, the horseshoe vortex motion is seen to also weaken due to this stress. The
distribution of stresses is in the opposite sense on the edges of the CVP below the jet. This
opposes the near wall motion induced by the CVP.

Sa000 © o o

0.1 ‘(:':l') [X] Y 0.1 3&:‘1") - [X] ‘(#,.l

Figure 2a: Comparison of X component of mean Figure 2b: Comparison of X component of mean

velocity, rms components V(u’n’)
and V(v'v') at XD = 3.05.0
respectively on the jet center plane
(ZD = 00) for inclined jets

velocity, rms components \’(u’u’) and
V(v'v’) at X/D = 3.0,5.0 respectively on
the jet center plane (Z/D = 0.0) for
normal jets (Experimental data is from

(Experimental data is from Findlay Ajersch et al 1995).
et al 1996).

The vorticity contours of wy are shown at location Y/D =0.1 from the wall (Figure 5).
Significant entrainment of the crossflow into the wake region is evident, and the footprints of the
coherent wake vortices (Fric and Roshko, 1994) can be clearly seen in the figure. For the 90°
injection, the blockage effect is greater, and the velocity vectors in Fig. 5 indicate that the
approaching crossflow is deflected laterally to a much greater degree by the 90° jet compared to
the inclined jet. Behind the jet, there is stronger crossflow entrainment into the wake region for
90° injection, and clear evidence of wake vortices or vertically oriented eddies are observed. For
30° injection, since the jet is much closer to the wall, evidence of wake vortices (with complete
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rollup) is not as strong in the instantaneous snapshot in Fig. 5. In both the 30° and 90° injection
cases, it is observed that associated with the sweep of the crossflow boundary layer into the wake
region, there is also an ejection of the wake fluid away from the jet centerplane. This behavior is
more clearly observed in the 90° injection case. There is also greater excursion of the wake
vortices in the lateral direction for the 90° injection and this is representative of the greater
spreading of the jet. It is worth noting that in the instantaneous snap-shots, no symmetry is
preserved along the jet centerplane, and crossflow entrainment is seen to cross over the
centerplane from one half of the jet to the other half (particularly for the 90° injection). It is also
observed that the flow structures in the wake are stronger at 90° injection, with the maximum
vorticity magnitude for the 90° injection nearly 75% greater compared to the 30° injection. This
is due to the stronger crossflow entrainment for the 90° injection case. Kelso et al (1993, 1996)
presented flow visualizations for these unsteady upright wake vortices. The vorticity at the jet-
crossflow shear layer as well as the vorticity generated at the wall encounters the critical points
in the flow field downstream to the hole. The vorticity generated at the wall and within the hole
is stretched and re-oriented by mean velocity gradients to give rise to such flow structures
(Figure 13 and 14).
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Figure 3: Contours of wy and time averaged Figure 4: Contours of v’'w’ and time averaged

velocity vectors at X/D = 5.0 for jet

inclination angles 30° and 90°. inclination angles 30° and 50°.

The contours of turbulent stress u’w’ that correspond to the vorticity contours in Fig. 5
are presented in Figure 6. As for the magnitude of wy, the magnitude of u’w’ is lower for inclined
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jet, with peak values for the inclined jet lower by a factor of 2. Since u’'w’ represents the
turbulent stress in the x-z plane, its magnitude is indicative of the extent of turbulent transport of
momentum in the lateral direction (Andreopolous and Rodi, 1984). The greater lateral transport
in the 90° injection is evident from a comparison of the velocity vectors, where the influence of
the jet clearly extends over a wider spanwise region for the 90° injection. The «’w’ magnitude

on this plane appears to be correlated with the magnitude of %‘K and %q-, indicating the
X r4

applicability of the gradient approximation for the turbulent stress. The production of this stress

e . W :
is primarily due to u’v’ component working on 2—a.nd v’'w’ component acting ona—U. Along
Z

the edges of the jet on the leeward side of hole, we observe the small regions of opposite signs
for u'w’. After the jet exit, the presence of strong lateral gradient of streamwise velocity
determines the local spreading of the jet around the hole. The magnitude of u'w’ at this location
decreases as the injection angle is increased. Further downstream, the vertical gradient of
spanwise velocity component comes into play and attributes to the higher levels of u'w’ and
hence to the increase in the lateral spreading of jet.
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Figure 5: Contours of wy and instantaneous Figure 6: Contours of Reynolds stress «’w’ at
velocity vectors at Y/D =0.1 for jet Y/D = 0.1 for jet inclination angles 30°
inclination angles 30° and 90°. and 90°.

The contours of the spanwise vorticity w, along the center plane of the jet (Z/D=0) are
shown in Figure 7. The substantially greater vertical penetration for the 90° jet-injection case is
evident in Fig. 7, with the jet penetrating upwards up to nearly 1.75D for the 90° jet-injection
compared to less than 0.75D for the 30° jet-injection. The spanwise rollers on the leeward side of
the jet are clearly evident in the 90° jet-injection case, consistent with the experimental
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observations of Fric and Roshko (1994) and Kelso et al. (1993, 1996). However, for the 30° jet-
injection, the proximity of the jet to the wall damps the spanwise vorticity, and distinct spanwise
rollers are not apparent in the instantaneous picture in Figure 7. The near-wall region clearly
shows large scale sweep (instantaneous flow directed toward the surface) and ejection events
(instantaneous flow directed away from the surface); this behavior is again more evident in the
normal-injection case.

The development of the horseshoe vortex upstream of the jet can be clearly seen in the
90° jet-injection case in the w, contours in Figure 7 and also in the w, contours in Figure 12. For
this case, w, over the jet-hole region can be clearly observed in Figure 12, indicating the potential
for crossflow ingestion into the hole region. For the 30° jet-injection case, the potential for such
ingestion appears to be reduced.

The contours of the turbulent stress u’v’ are presented in Figure 8. The contours of u’v’
are mostly negative, and hence, the production of u’w’ becomes positive in the regions where the
vertical gradient of spanwise velocity is positive. This happens predominantly at downstream
location of hole around the CVP. The greater production of u’'w’ at higher turbulence intensity
levels enhances the lateral spread of the jet (Figure 5 and 6). The negative levels of u’v’
correspond to the mixing layer at the leeward side of jet. For normal injection of coolant jets, the
positive levels of u’v’ are observed below the negative levels at downstream locations closer to
the wall. These correspond to the wake region of the jet. Again, the magnitude of this stress is
greater for 90° case.
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Figure 7: Contours of w, and instantaneous Figure 8: Contours of Reynolds stress u'v’ at Z/D
velocity vectors at Z/D = 0.0 for jet = 0.0 for jet inclination angles 30° and
inclination angles 30° and 90°. 90°.
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Figure 9 presents the pressure contours along the jet centerplane (Z/D=0). The pressure
gradients are expectedly larger for the 90° jet-injection case. The adverse pressure gradient
upstream of the jet is clearly evident, and the signature of the horseshoe with a pressure-defect
core can be seen. For 90° jet-injection, the spanwise rollers are clearly identified by the series of
closed pressure contours. The pressure contours for the 30° jet-injection case are relatively more
uniform downstream of the jet hole, and no evidence of spanwise rollers can be seen in the

pressure contours.
The contours of skin friction coefficient on the wall are presented in Figure 10, and these

are correlated with the magnitude of the @y, @y, ®, vorticity above the wall (Chong et al, 1998)
shown in figures 11, 5 and 12 respectively. The low values of skin friction are representative of
flow separation. In case of inclined jets, the flow separation region is small. For normal injection
case, the horseshoe vortex in front of the jet is a very strong flow structure with a system of three
eddies as shown in the ®, vorticity contours. The skin friction coefficient distribution upstream of
the jet appears to reflect this behavior. The same correlation with @, can be seen upstream of the
inclined jet. However, the distribution of skin friction coefficients in the wake of jets is
predominantly aligned in the streamwise direction and correlates best with @y contours.

A0 GMR1 QMY TR O OUID A8 4P4 4300 SN IIK Q.0 QWS N QU W M W Se em OZI OSINR OAIEI 13904 LIk 17106 LNST Lisd 2ewht out0

Figure 9: Contours of pressure and instantaneous FigurelO: Contours of skin friction coefficient at
velocity vectors at Z/D = 0.0 for jet inclination Y/D = 0.0 for jet inclination angles 30° and 90°.
angles 30° and 90°.

The particle traces are presented in Figures 13 (in the X-Z horizontal plane) and 14 (in the X-Y
vertical plane) for the normal injection case to explain the development of the unsteady upright
wake vortices. As stated earlier, the signatures of these wake vortices can be observed on a X-Z
plane parallel to the wall (Figure 5). The particle traces are rendered with the magnitude of the

103



. £ T
5

2 L inom)
20000 26714 21488 TN (1209 GNP QA8 OGS 1AMS OAEF 18I LTI 2360 2T X0 200 -LN43 14ME 13405 AT OIN4 LM CIDE OZMT QN GHET) NS LGN 171 20000

Figure 11: Contours of wx at Y/D = 0.2 for jet Figure 12: Contours of w, at Y/D = 0.2 for jet
inclination angles 30° and 90°. inclination angles 30° and 90°.

the Y component of vorticity. When the streamline is perpendicular to the wall and contains
vorticity, we can deduce that the streamline and the vorticity are associated with the wake
vortices. There appear to be three distinct mechanisms by which the wake vortices are generated.
One mechanism for the generation of upright vortices comes from the crossflow entrainment into
the wake region, and as shown in Figure 14, a streamline that originates in the crossflow
boundary layer is entrained laterally into the wake region and is then deflected and entrained
upwards leading to streamlines containing Y-vorticity that are perpendicular to the wall. The
streamlines bend to the upright position close to the centerplane. This mechanism has been
reported in the flow vizualization pictures of Fric and Roshko (1994) and Kelso et al. (1993)
where, close to the centerplane, the entrained crossflow forms a wall vortex which is reoriented
into an upright wake vortex. A second mechanism, shown in Figure 13, stems from the
deflection and entrainment of the horseshoe vortex originating upstream of the jet. For the
particles just upstream of the jet exit (Figure 13), and originating from the horseshoe vortex, the
streamlines are deflected in the wake to the upright position around 1.5D from the jet center.
There is significant vorticity present along these almost vertical lines indicating the core of wake
vortices. Therefore, one can conclude that the major contribution to these upright wake vortices
comes up from the re-orientation of streamlines in the vicinity of horseshoe vortex rather than
the wall vortex which is generated by the crossflow entrainment. The third mechanism for the
generation of Y-vorticity in the wake arises from the jet-crossflow interaction along the spanwise
interfaces of the jet. Evidence of this can be seen in Figure 5.
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Figure 13: Particle traces originating from the Figure 14: Particle traces originating from the
location near the jet exit (near horseshoe vortex). location of crossflow entrainment (near wall
(X=0.3D,Y=0.3D,Z=10.7D) vortex). (X=1.5D,Y=0.3D,Z=10.7D)

CONCLUDING REMARKS

Large eddy simulations of the jet-in-crossflow for two jet injection angles were
performed. The results obtained are consistent with the experimental observations of various
researchers (Andreopolous and Rodi, 1984, Fric and Roshko, 1994, Ajersch et al, 1995, Findlay
et al, 1996, Kelso et al, 1996). The following represent some of the major observations made in
this study.

0 The dispersion of jet in the mainstream is distinctly different for the two different injection
angles of 90-degrees and 30-degrees (Ajersch et al (1995) and Findlay et al (1996)).
Significantly greater penetration and mixing of the jet with the crossflow is observed for the
normally-injected jet.

o Large pressure gradients in the normal injection case indicate larger separation regions and
lead to reduction in the wall shear stress.

0 The skin friction coefficient at the wall behind the jet correlates with the streamwise
vorticity. For normal injection, the horseshoe vortex in front of the jet is responsible for low
skin friction values upstream of the jet.

0 The shear stress u’w’ magnitude correlates well with the lateral spreading of the jet. The
shear stress v’w’ acts to damp the secondary vortex motions while u’v’ controls the jet
penetration and the mixing at the jet-mainstream interface. Normal injection of jets is
associated with greater magnitudes of these turbulent shear stresses, and is responsible for the
observed greater penetration of the jet and greater mixing between the jet and the
mainstream.
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CHAPTER VIil

REYNOLDS-AVERAGED-NAVIER STOKES (RANS) SIMULATIONS OF NORMAL
FILM COOLING JETS IN CROSSFLOW

ABSTRACT

This study investigates the performance of several existing turbulence models for the
prediction of film coolant jet in a crossflow. Two equation models employing k-€ and k-w
closures, broadly categorized as high Reynolds number formulations, low Reynolds number
formulations, DNS based formulation and non-linear formulations have been used to simulate
the flow. In all, seven different turbulence models have been tested. Predictions with different
models have been compared with experimental results of Ajersch et al. (1995) and with each
other to critically evaluate model performance. The assessment of models has been done keeping
in mind that all models have been formulated for wall bounded flows and may not be well suited
for the jet-in-a-crossflow situation. Close agreement with experimental results was obtained at
the jet exit and far downstream of the jet injection region, but all models typically overpredicted
the magnitude of the velocities in the wake region behind the jet. The present study clearly
underscores the deficiencies of the current models, and demonstrates the need for improvements.

NOMENCLATURE

C,.C..C,, empirical constants appearing in k-€ turbulence models

D function used in the Low-Reynolds number k-€ model; also jet diameter
(=jet width)

E function used in the Low-Reynolds number k-g model

fisfor £y empirical functions of turbulent Reynolds number in Low-Re k- models

empirical function used in the Mansour-Rodi k-€ model

5

k turbulent kinetic energy

P turbulence production term

R Jet-to-crossflow velocity ratio
Re, turbulent Reynolds number

uv,w mean velocity components in X, y, and z directions respectively
v, mean jet velocity
uu Reynolds stresses

uL v w normal stresses w.r.t x, y, z axes
u'v’,v'w’,u'w’ shear stresses

X coordinate in the cross-stream direction
y coordinate normal to the wall
4

coordinate in the streamwise direction

£ rate of dissipation of kinetic energy
£ modified dissipation rate
@ specific dissipation rate (=€ /k )
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uou, dynamic and turbulent viscosity

v v, kinematic and turbulent kinematic viscosity
p density

o Prandtl number

aa’,p’ empirical functions in the k- model

p empirical constant in the k- model
INTRODUCTION

Film cooling of turbine blades is commonly employed to provide effective blade cooling
that is needed to ensure long life of the turbine blades and to permit higher turbine inlet
temperatures. The interaction of the coolant jet with the crossflow produces a highly complex,
three-dimensional flow field in the vicinity of the jet injection. The flow is characterized by both
large scale coherent structures and small scale turbulence, and the mixing process is controlled
by the dynamics of these structures. The coherent structures of primary importance have been
identified in the published literature to be jet shear-layer vortices which dominate the initial
portion of the jet, the horseshoe vortices which wrap around the base of the jet, the counter
rotating vortex pair (CRVP ) which results from the impulse of the jet on the crossflow and the
wake-vortices formed in the wake of the jet. Accurate prediction of such structures are necessary
to correctly predict the jet penetration and reattachment length that are important for heat transfer
calculations and the optimization of film cooling effectiveness.

Several experimental studies (see Fric and Roshko, 1994; Lee et al., 1994; Kelso et al,,
1996, for example) and numerical investigations (see Garg and Gaugler, 1997; Kim and Benson,
1993; Walters and Leylek, 1997, for example) of a jet-in-crossflow have been reported. In the
numerical studies, the primary approach adopted has been to use the Reynolds-Averaged Navier
Stokes (RANS) solver which requires the prescription of a turbulence model. The two equation
turbulence models (k-€ and k-w) have been used most extensively to simulate a jet-in-crossflow
with varying degrees of success. A systematic study of film cooling by Demuren et al. (1986)
revealed that the very complex flow field established behind the jet was not properly resolved
and the turbulent mixing process was crudely simulated with the eddy viscosity model. Demuren
(1993) also carried out computations using a multi-grid method and a second-moment closure
model to approximate the Reynolds stresses. Although a fairly good prediction of mean flow
trends was reported, there was considerable uncertainty regarding the accuracy of jet penetration
height. Multigrid calculations by Claus and Vanka (1990) failed to predict the horseshoe vortex
even with a highly refined grid. This was attributed partly to the inability of the k-€ model to
resolve the complex turbulence field. Findlay et al. (1996) included the plenum in the
computational domain for streamwise inclined jets. The computations underpredicted the stream-
wise injection of fluid from the jet and the flow field was not in good agreement with
experimental results for most of the domain. Ajersch et al. (1995) conducted an extensive
experimental investigation and a companion numerical simulation using a low-Re k- model
along with a non-isotropic extension to the effective viscosity for near wall turbulence. The
streamwise velocity in the jet wake was overpredicted and the recirculation region behind the jet
was found to be smaller and closer to the surface than that observed in the measurements.
Noticeable overprediction of shear stresses was observed and the simulation could not capture
the local minimum in kinetic energy which was measured in the wake region of the jet.
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The varied and often conflicting investigations carried out so far motivate the present
study where several existing turbulence models and their performance in predicting the film
cooling flow behavior is evaluated. The focus of this work is on the fluid dynamical behavior of
the jet, and the ability of the turbulence models to correctly reproduce the expected physical
behavior. Therefore heat transfer predictions are not included in the present work.

PROBLEM DESCRIPTION

The film cooling configuration chosen corresponds to the experimental study of Ajersch
et al. (1995) where measurements are presented for normal injection through square holes. The
physical domain in Fig. 1 shows a single row of six square jets on a flat plate which represents
the turbine blade surface. The computational domain is chosen to be a periodic module and is
shown in Fig. 2 and by the dotted lines in Fig. 1. The experimental investigation for the above
configuration was carried out for velocity ratios R=0.5, 1.0 and 1.5. However, the computations
have only been carried out for the lowest velocity ratio of R=0.5, and the general flow
characteristics for this case as predicted by the several models are evaluated by comparison with

the measurements.
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Fig. 1: Schematic of the physical problem Fig. 2: Side view of the computational domain
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For the turbulence model to be viable, the main features of the flow are expected to be
predicted correctly. In this work, we evaluate the performance of the models not only by the
quantitative comparisons with the measurements reported by Ajersch et al. at a few selected
locations (that do not provide a complete description of all the flow features), but also by
examining if the models accurately predict the dominant features of the flow field.

GOVERNING EQUATIONS
The steady state Reynolds averaged Navier Stokes equation contains the Reynolds stress

tensor —pTuJ’- which needs to be modeled by a closure approximation. The accuracy of the

prediction is based on the adequacy of the closure expressions in capturing the flow physics. The
different closure approximations described below include the high-Re models where the near-
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wall sublayer effects are not resolved, various forms of the low Re models where the near wall
damping effects are represented by different empirical expressions, and the non-linear models
where turbulence anisotropy is incorporated through non-linear corrections to the linear stress-
strain relations assumed in the linear turbulence models.

TURBULENCE MODELS
A number of different models based on the k- € and k- ® closures were used in this

study. The various models, under appropriate categories, are listed below:

1) High-Re k - £ model
In the standard k-€ model (see Launder and Spalding, 1974) the Reynolds stress is

modeled as

— 2 -
_pu;u:i = -; pkﬁij +2ptSij (1)

The eddy viscosity y, is related to the turbulent kinetic energy k and to its dissipation rate € as

L2
My =pCy— (2)
[ 4

Note that eqn. (1) represents a linear relationship between the turbulent stress and the rate of
strain, and forms the basis for all linear two-equation models.

The distributions of k and € in the flow field is determined from their modeled transport
equations (Launder and Spalding, 1974). The source terms in the modeled equations are given
by: )

Sk=P-€; Se=Cei(e/K)P - Cea(e¥/K) (3)

where P is the production of turbulence (=—p§§T}(aﬁi /axj)). The high-Re model avoids the need

to integrate the modeled equations right down to the wall by making use of the universal
behavior of near wall flows. The standard wall-function approach is thus used to specify the wall
boundary conditions for velocity. This is done either in the form of a wall shear stress expression
from Couette flow analysis or alternatively by determining the diffusion coefficient on the wall
such that the computed shear stress on the wall matches that obtained from the Couette flow
analysis.

For the turbulence kinetic energy a zero value is specified at the wall, while the value of
dissipation at a near wall point is set, using a local equilibrium assumption, as £=Cu3’4

K*2/(0.48y).

2 ) Low Re models
The low-Re models resolve the viscous sublayer adjacent to the solid walls and use

damping functions that ensure the transition from turbulent stresses to viscous stresses near the
wall. The low-Re versions of both k-€ and k- closure models have been used in this study.
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a ) Low- Re k - € models
The source terms for k and € in for the low-Re model take the form :

N .2
1 4 [ 4
S =P-€;8. =C 1§=P-C_,f,~+E (4
K e~ Celi €227 )
k2
where € =¢-D andpt=Cuf“? (5)

A number of different low Re models (see Patel et al., 1985) have been proposed
depending on their use of the functions f}, f;, and fu and the terms D and E. The models used in
this study are the Launder-Sharma model (Launder and Sharma, 1974) and the Lam-Brembhorst
model (Lam and Bremhorst, 1981). These two models have been selected due to the asymptotic
consistency of their functions in the near wall region as well as in the fully turbulent regime. The
Launder Sharma model uses 7 as the dissipation variable and therefore the term D must

asymptote to the nonzero value of € on the wall and should vanish in the fully turbulent regime
where & must tend to €. The term D for the Launder-Sharma model satisfies both the limits as

has been shown by Patel et al. (1985). The asymptotic limits of the damping functions f, f, and
the term E are also consistent with expectations.. The Lam-Bremhorst model on the other hand
solves for ¢ itself and therefore the term D is prescribed as zero. The fu function for this model
shows the correct variation in the near wall region but tends to unity somewhat slowly as
compared to the Launder-Sharma model. This model also employs the function f; to model the
appropriate growth of € in the region very close to the wall. The f, function in this model is
modified in order to yield a zero value on the wall. Thus the sink term in the € equation is
damped leading to the expected rapid increase of viscous dissipation as the wall is reached.

b ) Low-Re k -wmodel

The low-Re k-€ models suffer from the lack of appropriate wall boundary condition for £
which is specified mostly by ad-hoc empirical functions for the near wall flow. The choice of the
specific dissipation rate ® is therefore sometimes preferred since the near wall ® behavior is
known and therefore the boundary condition at the wall can be specified more accurately. The
transport equations for k and  are given by Wilcox and Traci (1976), and have the following
source terms:

s, =P-pﬂ'mk;sm=afp—ppmz (6)

where L, is given as y, = ¢’ o. In implementing this model, all standard functions and constants
for the low-Re version of the model, as given by Wilcox and Traci (1976), have been used. The
functions in this model serve the same purpose as in the low-Re k-& models and their asymptotic
behavior has also been found to be consistent.

3 ) DNS based low-Re k - £ model

Rodi and Mansour (1993) proposed an improved model for the € equation and a new f,
function using DNS data for a channel flow. The e-budget computation for the different terms in
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the € equation was used in conjunction with scaling arguments to obtain the following modeled
form of the € equation source term.

Y

£ £
S =C€]_P—C52ff’—+E (7)
£ k 32 k

The constants and expressions as proposed by Rodi and Mansour (1993) have been used here
with one exception. The expression for f; was given as:

fy = exp[2(P/€)/0.3Re:/ 2 8

The choice of 0.3 in the above equation is related to the 0.3 value that the structure
function(= —u’ vk ) assumes in the center of a channel for fully developed turbulence. Since the
flow considered here does not represent a fully developed turbulent channel flow, the factor of
0.3 was found to be inappropriate, and empirical adjustment of this constant led to a value of 2.1.

4 ) Non - linear low-Re Models
Experimental studies carried out for the flow situation being considered here have shown

that the flow is highly anisotropic due to strong curvature effects and therefore the non-linear
models listed below have been tested to evaluate their performance in this highly complex flow
situation.

a ) Mayong - Kasagi Model

Mayong and Kasagi (1990) proposed an anisotropic extension to the eddy diffusivity
model deduced from the interrelationship among the fundamental processes in the Kinetic energy
budget. Two additional terms containing quadratic velocity gradients and kinetic energy
gradients have been added to the standard linear model. The first of these terms has been derived
from the interrelationship between production and dissipation terms in the kinetic energy
equation, and plays the role of exhibiting anisotropic characteristics for each Reynolds stress
component over the whole flow field except for the immediate vicinity of the wall. The second
term added has been derived from the balance between the diffusion and dissipation terms so that
the wall-limiting condition for the normal Reynolds stresses is satisfied. The second term
however does not satisfy the general frame invariance necessary for the broadest range of
application, because the invariant condition is not generally satisfied in the immediate vicinity of
a plane interface where turbulence is quasi-two-dimensional due to the blocking of a normal
velocity component. More details of the model are found in Mayong (1988).
b ) Speziale Model

Speziale (1987) derived a non-linear model by means of an asymptotic expansion which
satisfies both realizability and invariance requirements. This model is expected to incorporate
the streamline curvature effects by introducing quadratic velocity gradient terms and is expected
to do better in flows where the differences in normal stresses are significant. Although the use of
the original Speziale model has been reported primarily in conjunction with wall-functions, it has
been implemented here in a low-Re model form with the damping functions in the near-wall
region obtained from the Launder-Sharma model.
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COMPUTATIONAL DETAILS
The modeled transport equations were solved using a three dimensional CFD code

developed by the authors based on the SIMPLER algorithm (Patankar, 1980). A control volume
based finite difference formulation that uses a second order accurate central difference scheme
for the viscous terms and a power law based scheme for the convective terms has been used. In
calculating the source terms in the equations for momentum conservation and turbulence
quantities, the first and second order derivatives were calculated using the Fornberg algorithm
(Fornberg, 1988) employing fourth order accurate centered differencing scheme for interior
points and second order accurate one-sided differencing for boundary points. A staggered grid
arrangement  with velocity components stored at the cell faces and all other scalar quantities
located at the grid points is employed to avoid checkerboard fields. The system of equations was
solved with the Tridiagonal Matrix algorithm employing an under-relaxation procedure to aid
convergence .

A non-uniform grid (59x60x140) was set up in the computational domain (Fig. 2) with
grid points clustered near the bottom wall and around the jet. The jet injection region was
resolved with a 19x19 mesh. Inlet profiles for both the crossflow (at Z/D=-4.5) and at the exit of
the jet-hole were provided from the experimental data of Ajersch et al (1995). The measured data
at the crossflow inlet corresponded closely with the 1/7-th turbulent boundary layer profile with a
boundary layer thickness of 2D. At the jet-hole exit, all three velocity components plus their rms
values were available from the measurements, and these were interpolated to prescribe the
numerical boundary conditions for both the mean velocity and the turbulence kinetic energy. A
periodic boundary condition was implemented in the spanwise direction representing a
transverse row of injection holes while at the outlet the normal gradient of all variables was
prescribed as zero. At the top plane, free-stream conditions from the measurements were

specified.
The equations were non-dimensionalized with the mean jet velocity,vj, and jet width,D ,

and computations were carried out at a Reynolds number (VjD /v) of 4700 for a blowing ratio of

0.5. The mass residual in each cell was determined from the continuity equation and the
maximum residual was established as the criterion for assessing the overall convergence of the

field. At residual levels of 107 -107 the solution was found not to change and the solution was
considered converged in this range. Grid independence was checked by comparing the
59x60x140 grid (nearly 0.5 million nodes) solution (using the low Re k-¢ Launder Sharma
model) with a more refined 71x90x200 grid (nearly 1.28 million nodes). The difference in the
solution on the two grids was found to be minimal (maximum difference in the velocity values
was less than 3%) as shown in Fig. 3.

RESULTS AND DISCUSSION
A discussion of the model predictions and comparisons with the measurements of

Ajersch et al. (1995) will be presented next. The following nomenclature will be followed
hereafter while referring to the various models. The high-Re model will be referred to as HRE,
the Launder-Sharma model as LS, the Lam-Bremhorst model as LB, the Mansour-Rodi mode] as
MR, the non-linear Speziale model as SP, the non-linear Mayong-Kasagi model as MK and the
k- model as KW.
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Fig. 3. Grid independence study with the LS model. Velocity and kinetic energy profiles at
X/D=0, Z/D=1: 0 71x90x200 grid; 59x60x 140 grid.

Mean Velocity and Turbulence Statistics
The mean velocity and turbulence kinetic energy profiles are compared with the
experimental results of Ajersch et al. (1995) at two spanwise locations: X/D=0 along the jet
center plane in Fig. 4, and X/D=-0.5 along the spanwise edge of the jet in Fig. 5. The figures
show how the flow varies with distance Y/D from the wall at various downstream locations
(Z/D=0, 1, 3,5 and 8). The main flow features namely the wake of the jet, the counter rotating
vortex pair (CRVP) and the horse-shoe vortex are expected to be clearly evident along the
X/D=0 and 0.5 streamwise planes, and therefore comparison of model predictions with
experimental data along these representative planes is likely to reveal how well the models
capture the features of the flow. The flow features are also captured in the plots shown in Figs. 7
which present streamwise vorticity component superimposed by velocity vectors along a cross-
stream plane.
Figure 4a shows the downstream development of the mean streamwise velocity (w /vj)

along the jet center plane (X/D=0). At the jet center (Z/D=0), where the jet exit plane boundary
condition are specified from experimental data, the model predictions compare well with
measurements. One hole-diameter downstream of the jet (Z/D=1), a reverse flow region close to
the wall is observed in the measurements which is captured well by the HRE model, but all other
models predict a much smaller reverse flow region. The differences in the length of the
recirculation regions predicted by the various low-Re models and the HRE model is brought out
very clearly by the vector plots presented later in Fig. 9. The HRE model behavior very close to
the wall is strikingly different from the other models which typically show three distinct flow
regions at this location - a wall-jet-like layer next to the wall with accelerating flow, a wake
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region above it where low velocities are observed, and a shear layer with strong velocity
gradients due to the velocity changing from low values at the top of the wake region to the free-
stream value over a very short vertical distance. The wall-jet layer very close to the wall could
not be validated as measurements very close to the wall was not available in the data set used in
this study. However, several experimental investigations (Andreopoulos and Rodi, 1984) have
revealed that a wall-jet structure does exist close to the wall even for low velocity ratio R,
although this effect is stronger for the high R cases. At this location (Z/D=1), immediately down-
stream of the jet, the low pressure in the wake of the jet induces laterally inward motion of the
surrounding cross-flow fluid close to the wall towards the jet center-plane. The entrained fluid
moves upwards, in the vicinity of the jet center-plane, towards the jet and it is then swept up by
the bent-over jet (Fig. 9). The inward motion of the high momentum fluid towards the jet center
plane close to the wall is partly re-oriented in the streamwise direction and leads to the formation
of the wall-jet like structure (seen in Fig. 7).

Evidence of the wall-jet can also be seen from measurements at Z/D=3 where there is a
peak close to the wall and the velocities then drop to lower values in the wake region. The steep
velocity gradient observed close to Y/D=1 represents the shear-layer where the velocity changes
from low values in the wake of the jet to the free-stream value. All models follow the
experimental trends appropriately but typically over-predict the stream-wise velocity in the wake
region. Also the shear-layer is closer to the wall which indicates that the wake-height is under-
predicted at this center-plane location.

The large deviation of model predictions observed in the vicinity of the jet (Z/D between
1 and 3) indicate that the near field of the jet, influenced significantly by the dynamical behavior
of the large-scale structures, is not properly modeled. The effect produced by the damping
functions in the low-Re models is therefore not accurate in the immediate vicinity of the Jet.

At further downstream locations, measurements show that the velocity gradients in the
wall-jet layer and the shear-layer are diminished, and flow recovery towards a boundary layer
profile is observed. The velocity gradients are over-predicted in the wall-jet layer at Z/D=5 while
agreement with experimental results is better at Z/D=8. For Z/D greater
than 3, the LB model shows the best agreement with experimental data. The LB model is known

to give the correct asymptotic behavior —w'v'ec y* in the near wall region due to the
appropriate variation of the f, functions in the immediate vicinity of the wall. The fy function

behavior of the LS model has been found to be more consistent in the fully turbulent regime and
therefore it does notdo as well as the LB model in the near wall region. The non-linear SP
model does not show any significant improvements in the mean velocity field predictions and its
trends are only slightly different from the LS model. This may in part be due to the fact that in
the near wall region both these models employ the same damping functions and also that the
non-linear quadratic terms introduced in the Reynolds stress terms in the SP model do not make
any significant contribution. The MK model, at Z/D=5 and Z/D=8, under-predicts the streamwise
velocity gradients in the shear layer and consequently predicts a deeper penetration of the jetinto
the crossflow. The performance of the non-lincar models cannot however be judged merely on
the basis of mean velocity trends and a proper evaluation of the Reynolds stresses will be carried
out in a later section in order to get the correct picture on these non-linear variants of the k-g
model.

The secondary motions in the cross-stream plane are evaluated by comparing the vertical
velocity profiles in Fig. 4b and the cross-stream velocity in Fig. 4c. The vertical velocity
distribution at the jet center (Z/D=0) once again shows good agreement with experimental data
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owing to the measured jet inlet conditions specified at the Jet-exit plane. The large vertical
velocity values (V/V] greater than 1) are because the crossflow acts as a partial cover over the jet
causing the jet to bend before leaving the jet exit and leads to the acceleration of the Jet toward
the downstream edge of the exit hole. In the reverse flow region, at Z/D=1, two peaks are
recorded, the first peak off the wall is in the wake region where the reversing fluid is lifted up by
the deflected jet, while the second peak corresponds to the deflection of the cross-stream over the
Jet. This trend is closely followed by the models although the peak values are predicted closer to
the wall. This is primarily due to the predicted wake region being much closer to the wall and the
Jet penetration being under-predicted by the models in the Jet center-plane. Additionally, the
models differ in their prediction of the first peak value off the wall while the second peak is the
same for all the low-Re models. The LB model predicts the lowest peak value while the MK
model records the highest first peak value with the other models lying in between. These
differences are related to the behavior of the damping functions for the various models with the
LB model functions being asymptotically consistent while the fy function of MK model tends to
unity somewhat slowly. The dependence on these functions is further emphasized by the
observation that the second peak is the same for all the low-Re models since the functions tend to
unity at larger distances from the wall.

Further downstream, at Z/D=3, measurements suggest that, as for the streamwise
velocity, the wake region is not properly predicted with the predictions showing a faster
recovery. Measurements between Z/D=3 and 8 show a negative velocity at the top of the bent-
over jet which indicates that the cross-flow is coming down at this point. The downwash of the
cross-flow as well as the low-velocity magnitudes in the wake region are not captured by the
model predictions. This is probably due to the models predicting a smaller reverse flow region
behind the jet which implies that the wake effect is not as strong as experimentally observed.
The measurements continue to show a dual-peak structure at Z/D=3, while the predictions only
show a single peak due to the faster flow recovery. The predicted magnitudes at Z/D=3, 5, and 8
show the same trends as at Z/D=1, with the KW model showing the largest peak values and the
LB model showing the smallest magnitudes and the best agreement with the data. The behavior
of the MK model at Z/D=5 and Z/D=8, with the peak shifted upwards, is a consequence of the
Jet penetration being over-predicted at these locations.

The spanwise velocity (U/Vj) presented in Fig. 4c should be zero along the jet center

plane if the flow at all the inflow planes is symmetric. However, measurements indicate that the
inflow at the jet exit plane (Y/D=0) is not symmetric with the flow slightly skewed in the lateral
direction. This asymmetry in the inlet profile is convected downstream, and is confirmed by the
velocity measurements as well as the predictions at the Jet exit (Z/D=0) and immediately
downstream of the jet (Z/D=1). As the flow develops downstream, this asymmetry should reduce
and the spanwise velocity across the Jet-center-plane should become very small. The flow
predictions show this trend. However, the measurements show high degree of scatter at
downstream locations (Z/D=S5, 8) and therefore cannot be relied upon.

The kinetic energy (KE) profiles along the Jet center-line are shown in Fig. 4d. The KE
distribution is governed by a number of factors, the important ones being the interaction of the
oncoming boundary layer and the jet, production due to the various velocity gradients
dW/dY,dV/9Z,dU/9X and strong streamline curvature effects especially in the vicinity of the jet.
At the jet center-plane however, the production due to the gradient Jw/iv seems to be the
dominant process as a close correlation between the velocity gradient ow/or (Fig. 4a) and the
KE (Fig. 4d) can be seen. The peak KE values occur at approximately the same locations as the
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peak velocity gradient positions. The HRE, LB and MK models over-predict the peak values at
the jet center (Z/D=0) while the other models show close agreement with measurements. The
experimental profile at Z/D=1 shows peak values in the wall-jet and lower-wake regions and in
the shear-layer where strong gradients ow/ar occur. Model predictions show three peak values
corresponding to the strong gradients in the wall-jet layer, the lower-wake region and the shear-
layer. The HRE model over-predicts peak values in the wake region and in the shear layer.
Further downstream at Z/D=3 and Z/D=5 two distinct peaks are observed in the measurements
which once again correspond to the strong velocity gradient swsar at these positions. The non-
lincar and the low-Re k-&€ model predictions in the shear.layer are in good agreement with
measurements at Z/D=3, but the HRE model over-predicts the peak level in this region while the
KW model underpredicts the turbulence peak. The models do not behave appropriately in the
wake region and are unable to accurately capture the peak value in the wake at Z/D=3, 5 and
Z/D=8. The LB model once again gives better predictions at these locations. However, the KW
model significantly under-predicts the KE levels in the wake region. The behavior of the models
in the near wall region is influenced by the dissipation rate € which forms the sink term in the KE
equation. The € level in the near wall region is controlled by the functions f,,f; and the term E.
Both f, and E tend to increase the value of € near the wall and thereby reduce the KE levels. The
influence of f; is confined to a region very close to the wall in case of the LB model while it is
unity for the other models. The term E is therefore dominant in the growth of € near the wall.
The LB model has E equal to zero as the model solves for the dissipation rate itself and therefore
the KE level in the near wall region is higher as compared to the other models. Clearly, it is more
attractive to solve for £ from a physical point of view. The KW model greatly under-predicts
the KE levels in the wake region and as in the case of the low-Re k- models the function o
multiplying the production term in the ® equation along with the constant B which tends to
decrease the destruction term lead to very high values of @ in the near wall region. The
combined effect is to reduce the KE levels near the wall. The KE trends in the KW model case
suggest that the model functions in the ® equations are not appropriate as they lead to drastic
reduction of the kinetic energy. The non-linear models do not show any significant
improvements over their linear counterparts and are unable to predict the correct magnitudes in
the wake.

The profiles along the edge of the jet (X/D=-0.5) are shown in Fig. 5. The streamwise
velocity at different downstream locations is expectedly higher than that along the jet center line
(Fig. 4a), due to the weaker wake effect, which also results in reduced velocity gradients ow/av .
The wall-jet layer is also noticed here at Z/D=1 with steep gradients in this region and in the
shear layer region above the wake. The wake can be seen distinctly at this location, and all the
models appear to capture the wake region well except the high-Re model. The wake gradually
diminishes with increasing downstream distances, and beyond Z/D=3 close agreement with
experimental data is shown by all the models.

Vertical velocity comparisons have been shown in Fig. 5b. As at Z/D=0 (Fig. 4a),
velocitics as high as 0.8 times the free stream velocity are predicted over the jet inlet hole due to
the partial cover effect of the crossflow causing the flow to accelerate toward the downstream
end. The measurements however do not show this peak at Z/D=1, and instead show two peak
values, the one closer to the wall is due to the upward motion caused by the CRVP while the
other peak at a larger distance from the wall is once again due to the crossflow deflected over the
bent-over jet. The predictions show large near-wall deviations from the measured values with
negative values close to the wall turning positive around Y/D=0.3. The negative values close to
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the wall represent the outer downward moving parts of the CRVP, while the positive values
represent the upper portions of the CRVP and the crossflow regions deflected upwards by the
Jet. Since the measurements do not show negative values close to the wall, it may be concluded
that the CRVP in the experiments has a smaller lateral spread relative to the predictions. At Z/D
locations further downstream, the measured and predicted velocities are primarily negative
representing the downwash side of the CRVP. The measured behavior is captured well by the
models at Z/D=3 where the KW model over-predicts the peak downward velocity while the LB
mode] underpredicts it. The experimental measurements shows some scatter in the data at Z/D=5
and Z/D=8 locations, although the general trend of the Jet and the crossflow velocities are
downwards toward the wall. The downward trend is maintained by the model predictions, but no
meaningful comparison can be made with the experimental measurements due to the scatter in
the data. In comparing the model predictions with each other, they follow the same trends as
observed along the jet center line in Fig. 4 and therefore the arguments extended earlier to
account for the model predictions are valid here as well.

Spanwise velocity comparisons in Fig. Sc indicate that the model predictions show good
agreement with experimental profiles. The spanwise velocities are quite significant at the edge of
the jet, and U/V; reaches values as high as 1 close to the wall. At Z/D=0 the spanwise velocity
near the lower surface is negative which indicates that the flow is outwards and away from the
Jet center plane. Close agreement with measurements is observed at this location where the HRE
model shows a relatively lower peak value. At Z/D=1, the velocities are all positive close to the
wall indicating flow towards the jet center line. The CRVP entrains the surrounding crossflow
fluid close to the wall resulting in positive cross-stream velocity near the wall. The velocity
changes sign further away from the wall representing the upper half of the CRVP where the
flow is moving away from the centerline. The peak negative value is obtained in the top regions
of the CRVP structure and the models are in good agreement with measurements here. As the
flow progresses downstream the CRVP structure diminishes in strength as seen from the
experimental profile at Z/D=3. Models on the other hand predict a stronger structure at this
location. At Z/D=5, both the measurements and predictions show a reduction in the strength of
the CRVP. However, the measurements do not show any negative values along the top half
indicating a pinched CRVP structure with a wider base and a narrower neck. Predictions, on the
other hand, show negative velocitics on the top half of the CRVP, both at Z/D=5 and 8,
indicating a CRVP that is more dispersed in the lateral direction than the experiments. The
CRVP cannot be distinctly identified in the measurements at Z/D=8 where the scatter in the data
indicates that the structure has diminished in strength considerably. The models on the other
hand show a distinct structure at this location. The LB model gives better
predictions, as before, in the near wall region at Z/D=5 and Z/D=8.

Kinetic energy profiles along the edge of the Jet correspond to those in a developing
boundary layer except in the immediate vicinity of the jet at Z/D=0 and Z/D=1. At Z/D=0 the
models follow the experimental trends closely, but over-predict the peak level Once again, a
close correspondence between the velocity gradient w/ar and KE trends is observed at Z/D=1
where the peak values correspond to the maximum gradient locations. At this location however,
the contribution of the gradient 3U/ax has been found to be significant, largely due to the strong
entrainment of the crossflow into the wake region. Model predictions typically show a number of
local peak values corresponding to the large spanwisc velocity gradients. At downstream
locations the experimental profiles are like those
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in a boundary layer and the models mimic this behavior appropriately, but they under-predict the
peak KE levels. The LB and KW models show peak values very close to the wall at Z/D=S and
Z/D=8 and this is once again related to the steep stream-wise velocity gradients in the near wall
region observed at these locations.

The normal stress profiles along the jet center plane (X/D=0) are presented in Fig. 6.

The experimental w’? profiles in Fig. 6a shows a correlation to the KE profile and the
streamwise normal velocity gradient aw/ay in Fig. 5d. This correlation is particularly strong in
the far field (Z/D>5) where peak values are obtained in the jet shear-layer region associated with

high sws9y and turbulence production. In the near ficld, peak w’? values are observed in the
shear layer and in the wall-jet region where large sw/ar gradients are found. The correlation

between w2 and aw/ar is not taken into account by the linear eddy viscosity models where the
2

stress w'“ is assumed to be directly proportional to the gradient 3w/azand therefore any simple
eddy viscosity model is not expected to do well in this highly complex flow situation.

The measured trends of the stress »’2 in Fig. 6b also show correlation with awsar . In the
near field (Z/D=1), however, the near wall behavior also appears to correlate well with au/ax
which is high close to the surface due to the entrainment of the crossflow boundary layer into the
wake region. The anisotropy in the near field of the jet injection close to the wall is clearly
evident, and is associated with the dominance of the coherent structures in these regions.
However, the low-Re and nonlinear models are found to reproduce this non-isotropic effect in a
qualitatively satisfactory manner. At further downstream locations the dependence on the
gradient ow/dr becomes stronger especially in the wake of the jet where the normal stresses

w’Z and w7 show trends similar to the KE profiles. Models under-predict the stress levels in the
wake region for Z/D > 3 where the LB model gives better predictions in the near wall region.
The anisotropy of the flow in the vicinity of the Jet is further demonstrated by the

v'—zproﬁlcs at Z/D=0 and Z/D=1 in Fig. 6c. In the near field the v’2 profiles appear to scale
with 9v/3Y. At Z/D=3 and Z/D=S5, however, the effect of the gradient ow:ov is apparent here

with the peak v’2 value occurring in the shear-layer region. The profile flattens out as the flow
moves further downstream and at Z/D=8 a closer correspondence can be seen with the velocity
gradient ow/dr rather than with av/ay (see Fig. 4b). The normal stresses are therefore not
represented appropriately by the models. In the near field, the turbulence exhibits significant
anisotropy. The flow field becomes more isotropic further downstream, but the gradient

approximations relating ugz to dU; BX; do not appear to be valid. Rather all stresses appear to

correlate with owsar .

The profiles for the shear stress w'v’ is presented in Fig. 6d. The peak value observed in
the measurements and predictions are in the Jet-shear-layer regions and is a consequence of the
high ow/or in the shear layer region. This dependence is consistent with the fact that the product

v'“3w/3Yis the dominant term in the production of w'v’. Peak values are over-predicted by the
models at Z/D=0 location and only the KW model follows the experimental trends closely. The
peak values decrease as the flow moves downstream where the stream-wise velocity gradients
are reduced in the shear layer. At Z/D=3 and beyond, the stress values are very small in the wake
region where the velocities are low and fairly uniform. Model predictions in the recirculation
region and further downstream follow the measured trends correctly largely due to the fact that
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the eddy viscosity model also incorporates the dependence of w'v’on awrar . The shear stress
predicted by the models is found to change sign close to the wall at Z/D=1 and is seen to follow
the velocity trends reported in Fig. 4a where velocity gradients also change sign close to the wall.

In general, the model predictions for the turbulent shear stress w’v’ follow the measured
trends fairly well in the shear layer and also reflect the appropriate dependence on velocity
gradients. In comparing the model predictions, the HRE model shows the greatest level of over-
prediction in the peak stress levels. This would lead to the greatest levels of turbulent transport,
and is consistent with the observation that the HRE model is associated with the highest lateral
jet penetration. The failure of the non-linear models to give better predictions over the linear
ones was somewhat unexpected. The introduction of the non-linear quadratic terms in the stress-
strain relationship in order to incorporate the effect of strong streamline curvatures are therefore
insufficient and cubic terms must be included in order to obtain the desired stress-strain
coupling. The introduction of merely quadratic terms in the SP and MK models do not produce
the desired effect of streamline curvatures on the stress levels.

Vector Plots and Vorticity Contours

Attention is now turned toward describing the overall features of the flow field by
presenting vorticity contours and vector plots along a typical cross-stream plane. Figures 7
presents the velocity vectors superimposed on the streamwise vorticity contours at Z/D=3 cross-
stream plane. The predictions for all seven models evaluated are presented, and in each figure the
same color scale is used in order to facilitate a comparison between the different model
predictions.

At Z/D=3, the CRVP is clearly established and is the dominant feature in the flow field.
The HRE model shows the greatest lateral spread which was also observed in the velocity
comparisons shown in Fig. 5 where the spanwise velocities predicted by the HRE model are
larger than those predicted by the other models. The MK model shows the greatest vertical
spread of the jet, and this was also observed in Fig. 4, where in the MK model predictions, the
shear layer region was displaced vertically upwards relative to other models and the
measurements. The LB model predictions show the weakest CRVP, and the lowest levels of
vertical and lateral spread. All the low-Re models show small negative velocities close to the
wall between X/D of -1 and -1.5, and these reflect the manifestation of the horse-shoe vortex. It
is the strongest, and can be clearly observed in the KW model predictions. Also of interest is the
clear development of a wall-vortex structure in all the low-Re models. The wall-vortex is a
manifestation of the crossflow entrainment into the wake region encountering an adverse
pressure gradient in the spanwise direction near the jet centerplane. This adverse pressure
gradient leads to flow reversal in the spanwise (XY) plane and the formation of the wall vortex
structure close to the surface (as captured by the low-Re models). The vortex is confined
between X/D of 0 and -0.5 at this Z/D location. As for the horse-shoe, the KW model predicts
the strongest wall vortex structure. Note that the HRE model does not predict the wall vortex at
all

Details of the horse-shoe vortex predicted at Z/D=8 location are shown in an enlarged
view in Fig. 8.The horse-shoe can be clearly observed in all the model predictions, and show
significant differences in size and strength, with the KW model showing the most significant
horse-shoe structure.

The differences in the recirculation region behind the jet are presented in greater detail in
Figure 9, which shows that the recirculation in all the low-Re models is qualitatively similar,
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with the reversed flow being entrained upwards into the jet and then carried forward along its
trajectory. The HRE model shows a much larger region of negative streamwsie velocity, with
strong crossflow entrainment into the wake. The recirculation region in the HRE model extends
all the way till Z/D=1.5, while in the other models the recirculation region is less than 1-D from
the center of the jet-exit.

The region upstream of the jet marks the inception of the horse-shoe vortex. An exploded
view of this region is shown in Fig. 10, where the KW model, the SP model and the MR model
all show the inception of the horse-shoe at this X/D=0 centerplane. Since all models show the
horse-shoe vortex at constant-Z/D planes further downstream (see Fig. 7, 8), this implies that for
the models where the horse-shoe is not observed at X/D=0 in Fig. 10, the inception may occur at
other X/D planes. Evidence of this is seen in streamwise and spanwise vorticity contours (not
shown here) at a constant Y/D plane (=0.05) very close to the wall.

CONCLUDING REMARKS

Numerical predictions for film cooling jet in a cross-flow have been carried out in
this study using seven different turbulence models: a high-Re model (HRE), low-Re models
(LS, LB, KW), non-linear models (SP, MK), and a DNS based low-Re model (MR). The mean
flow velocity and turbulent statistic profiles in general agree fairly well with experimental trends.
The CRVP is distinctly predicted by all the models, but only a few models manage to capture
the horse-shoe structure correctly for the low blowing ratio case considered in this work. The
HRE model is not very well suited for the specific flow situation as it does not resolve the near
wall region properly. Although the mean flow profiles are predicted well, the turbulence levels
are over-predicted and the HRE model is also unable to capture the recirculation in front of the
Jet. The HRE model predicts the largest levels of spanwise-jet-penetration, and substantially
overpredicts the measured values of the spanwise and vertical velocities. The use of this model in
such a complex flow situation is therefore not recommended. The LS model which resolves the
near wall region follows the experimental trends correctly, but fails to predict the correct trends
in the wake of the jet and does not represent the turbulent mixing taking place in this region
appropriately. The near wall region behavior of the LB model is consistently good, and this
model, in general, seems to provide the best agreement with measurements. Compared to the
other models, the LB model shows the smallest levels of vertical and spanwise spread. However,
predictions in the jet region do not follow the experimental trends correctly and the model is also
unable to capture the recirculation in front of the jet. This structure is distinctly captured by the
MR model. In this region the gradients in the vertical direction are of primary importance and
the scaling arguments used for deriving the correlation terms in the €-budget (see Rodi and
Mansour, 1993) hold good. In the jet and its vicinity. however, the gradients in the other
directions cannot be neglected and therefore the simplified € budget is inadequate in the jet and
its wake region. Clearly, the € budget needs to be optimized for the present flow situation using
DNS data on lines similar to the MR model. The SP model predicts the turbulent characteristics
trends correctly, but like the other models it is unable to resolve the variations observed in the
wake of the jet. The MK non-linear model significantly over-predicts the vertical jet penetration.
The inability of the SP and MK nonlinear models to give better predictions compared to the
linear models is thought to be a consequence of the fact that the the non-linear model
cocfficients were obtained through curve fitting of experimental data for simple wall bounded
flows (see Mayong and Kasagi, 1990 and Speziale, 1987) and may not be well suited for the jet
in a cross-flow situation. The improved predictions of the near wall structures obtained with the
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KW model can be attributed in part to the fact that the boundary conditions specified for w are
more accurate than those for €. This problem related to the € behavior near the wall has been
pointed out by a number of researchers.

It is therefore clear from the present study that the models in there present form give
overly simplistic predictions for the highly complex flow field being considered here. A
comparison of the model predictions clearly reveals the need for better resolution of the the near
wall region, asymptotic consistency of model coefficients and damping functions in the jet and
wall bounded regions respectively, and an appropriate representation of the € budget. Also
required is a suitable non-linear formulation to accurately predict the non-isotropic nature of the
flow. An effort along these directions using DNS predictions for Jet in a crossflow (Muldoon and
Acharya, 1998; Sharma and Acharya, 1998) to guide the model development is being made by
the authors and is to be reported shortly.
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d)Vk/V,
Figure 4 Velocity and kinetic energy profiles at X/D=0 at different Z/D from center of the jet
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d)W/Viz

Figure 6 Stress profiles at X/D=0 at different Z/D from center of the jet
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CHAPTER IX

CONCLUDING REMARKS AND FUTURE WORK

In this report we have presented an outline of the numerical methodology used for
DNS/LES/RANS and representative results for the flow field associated with the jet-in-a-
crossflow configuration. In presenting the results, the focus has been on the flow dynamics rather
than on the heat transfer, since the flow field has to be correctly predicted before there is any
hope of correctly computing the surface heat transfer. Our efforts have been primarily
concentrated in obtaining a better understanding of the flow physics associated with the
interaction of the jet with the crossflow, and in evaluating the ability of turbulence models in
capturing this flow physics. In a very broad sense, we have reached the following major
conclusions.

O The jet-in-crossflow configuration that is representative of film cooling flows is
characterized by highly dynamical large scale structures. These large-eddy structures
include the CVP, the horseshoe vortex, wall vortices, wake vortices, and jet shear layer
vortices.

0 DNS is able to correctly capture the flow physics and accurately predict the evolution and
interaction of these structures.

O  RANS simulations, with two-equation turbulence models, are unable to capture many of the
large scale dynamical structures. Although different turbulence models produce
qualitatively the same behavior, there are significant quantitative differences in the
predictions depending on the model used. In general, RANS predictions over-predicted the
Jet penetration in the lateral direction, and significantly over-predicted the wake recovery.
Best agreement was obtained with the Lam-Bremhorst model. The non-linear models were
found to be inadequate in correctly describing the flow anisotropy.

Q LES predictions were found to correctly describe the behavior of the large scale structures,
and were found to be an accurate cost-effective alternative to the computationally expensive
DNS calculations. The use of LES holds great promise for film cooling predictions since
these computations can be done on workstations, and can accurately describe the flow
Pphysics.

More specific conclusions regarding the flow physics and the inadequacy of the various models
is presented at the end of each chapter.
Future work is now being carried out by us in three major directions as described below.

Q The DNS/LES codes are being used to understand the flow physics associated with film
cooling flows. Issues being studied include: effect of high free-stream turbulence, effect of
free-stream length scales, effect of rotation, effect of wake crossings, compound angle
injection, multiple row injection, effect of hole aspect ratio, and plenum effects.

O DNS/LES simulations are being used to compute the statistics (higher order correlations)
that appear in a modeled form in the RSTM and the two-equation turbulence models. We
intend to evaluate the validity of the modeled expressions by comparing them with the
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DNS/LES computed statistics. This comparison will allow us to better parametrize the
constants or functions that appear in the closure expressions or to better capture the flow
Physics through a different form of closure expression. These improved turbulence models
will be fed back into the RANS code.

a The DNS/LES codes are being improved to handle more complex geometries, and to be more
computationally efficient. These activities include: incorporation of multi-block, multi-grid
procedures, curvilinear/unstructured grids, improved differencing schemes (finite difference
or spectral), improved solvers for the system of equations, code structuring and
parallelization, and finally post-processing vizualization tools. The ultimate goal is to be able
to run LES codes for a complete airfoil incorporating multiple film cooling rows and
plenum effects, and to do this in a cost-effective manner. Our initial successes with the LES
code are extremely promising since, on a Digital Alpha 500 workstation, we are able to
obtain in 1-2 days, complete runs (7-8 jet flow-through times over the blade surface) on a
mesh that resolves the dynamics of all the important structures. If several workstations are
hooked to run simultaneously, LES simulations can be obtained in less that a day.

In closing, we would again like to express our gratitude to NASA Glenn Research Center
and the Turbomachinery Flow physics group that supported our efforts and made this work possible.
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